

# The MVAPICH2 Project Latest Status and Future Plans

Presentation at MPICH BoF (SC '17)

by

#### Hari Subramoni

The Ohio State University

E-mail: subramon@cse.ohio-state.edu

http://www.cse.ohio-state.edu/~subramon

### **Overview of the MVAPICH2 Project**

- High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)
  - MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Started in 2001, First version available in 2002
  - MVAPICH2-X (MPI + PGAS), Available since 2011
  - Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014
  - Support for Virtualization (MVAPICH2-Virt), Available since 2015
  - Support for Energy-Awareness (MVAPICH2-EA), Available since 2015
  - Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015
  - Used by more than 2,825 organizations in 85 countries
  - More than 433,000 (> 0.4 million) downloads from the OSU site directly
  - Empowering many TOP500 clusters (June '17 ranking)
    - 1st, 10,649,600-core (Sunway TaihuLight) at National Supercomputing Center in Wuxi, China
    - 15th, 241,108-core (Pleiades) at NASA
    - 20th, 462,462-core (Stampede) at TACC
    - 44th, 74,520-core (Tsubame 2.5) at Tokyo Institute of Technology
  - Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)
  - http://mvapich.cse.ohio-state.edu
- Empowering Top500 systems for over a decade
  - System-X from Virginia Tech (3<sup>rd</sup> in Nov 2003, 2,200 processors, 12.25 TFlops) ->
  - Sunway TaihuLight (1<sup>st</sup> in Jun'17, 10M cores, 100 PFlops)



### **MVAPICH2** Release Timeline and Downloads



### **MVAPICH2** Architecture

### High Performance Parallel Programming Models

Message Passing Interface (MPI)

PGAS (UPC, OpenSHMEM, CAF, UPC++) Hybrid --- MPI + X (MPI + PGAS + OpenMP/Cilk)



<sup>\*</sup> Upcoming

### **MVAPICH2 Software Family**

| High-Performance Parallel Programming Libraries |                                                                                                                                            |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| MVAPICH2                                        | Support for InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE                                                                                |
| MVAPICH2-X                                      | Advanced MPI features, OSU INAM, PGAS (OpenSHMEM, UPC, UPC++, and CAF), and MPI+PGAS programming models with unified communication runtime |
| MVAPICH2-GDR                                    | Optimized MPI for clusters with NVIDIA GPUs                                                                                                |
| MVAPICH2-Virt                                   | High-performance and scalable MPI for hypervisor and container based HPC cloud                                                             |
| MVAPICH2-EA                                     | Energy aware and High-performance MPI                                                                                                      |
| MVAPICH2-MIC                                    | Optimized MPI for clusters with Intel KNC                                                                                                  |
| Microbenchmarks                                 |                                                                                                                                            |
| ОМВ                                             | Microbenchmarks suite to evaluate MPI and PGAS (OpenSHMEM, UPC, and UPC++) libraries for CPUs and GPUs                                     |
| Tools                                           |                                                                                                                                            |
| OSU INAM                                        | Network monitoring, profiling, and analysis for clusters with MPI and scheduler integration                                                |
| OEMT                                            | Utility to measure the energy consumption of MPI applications                                                                              |

#### **MVAPICH2 – Basic MPI**

#### Fast Startup on Emerging Many-Cores



#### Advanced Allreduce with SHARP



### Enhanced Intra-node



# Enhanced Inter-node Performance for OpenPOWER



- Major Features and Enhancements in MVAPICH2 2.3b released on 08/10/2017
  - Enhanced performance for point-to-point and RMA operations
  - Enhanced process to core mapping for many-cores
  - Improved support for emerging many-core architectures (ARM, OpenPOWER, KNL)
  - Improve launch time for large-scale jobs with mpirun rsh
  - Add support for non-blocking Allreduce using Mellanox SHARP
  - Enhanced collective tuning for various Knight's Landing and Intel Omni-Path based systems
    - Bebop@ANL, Bridges@PSC, and Stampede2@TACC systems
  - Enhance support for MPI\_T PVARs and CVARs

### **MVAPICH2-X – Advanced MPI + PGAS + Tools**

#### Enhanced MPI\_Bcast for Emerging Many-Core Platforms with Optimized CMA-based Design







#### MPI\_Allreduce On Stampede2 (10,240 Processes) •



#### Major Features and Enhancements in MVAPICH2-X 2.3b released on 10/30/2017

- MPI Features
  - Based on MVAPICH2 2.3b
  - Optimized support for Skylake, ARM, and OpenPOWER architecture
- MPI (Advanced) Features
  - Support Data Partitioning-based Multi-Leader Design (DPML) for MPI collectives
  - Support Contention Aware Kernel-Assisted MPI collectives
  - Support for OSU InfiniBand Network Analysis and Management (OSU INAM) Tool v0.9.2
- OpenSHMEM Features
  - Based on OpenSHMEM reference implementation 1.3
  - Support Non-Blocking remote memory access routines

### **MVAPICH2-GDR – Optimized MPI for clusters with NVIDIA GPUs**









- Major Features and Enhancements in MVAPICH2-GDR 2.3a released on 11/09/2017
  - Support for CUDA 9.0, Volta (V100) GPU, and OpenPOWER with NVLink
  - Efficient Multiple CUDA stream-based IPC communication
  - Enhanced performance of GPU-based point-to-point communication
  - Leverage Linux CMA feature for enhanced host-based communication
  - Enhanced performance of MPI\_Allreduce for GPU-resident data
  - InfiniBand Multicast based designs for GPU-based broadcast and streaming applications
  - Efficient broadcast designs for Deep Learning applications
  - Enhanced collective tuning on Xeon, OpenPOWER, and NVIDIA DGX-1 systems

**MPICH Bof (SC'17)** 

### **MVAPICH2-Virt – Advanced Support for HPC-Clouds**





- Virtualization has many benefits
  - Fault-tolerance
  - Job migration
  - Compaction
- Have not been very popular in HPC due to overhead associated with Virtualization
- New SR-IOV (Single Root IO Virtualization) support available with Mellanox InfiniBand adapters changes the field
- Enhanced MVAPICH2 support for SR-IOV
- MVAPICH2-Virt 2.2 supports:
  - OpenStack, Docker, and singularity

#### **MVAPICH2** – Plans for Exascale

- Performance and Memory scalability toward 1M cores
- Hybrid programming (MPI + OpenSHMEM, MPI + UPC, MPI + CAF ...)
  - MPI + Task\*
- Enhanced Optimization for GPU Support and Accelerators
- Taking advantage of advanced features of Mellanox InfiniBand
  - Multi-host Adapters\*
  - Hardware-based Tag Matching\*
- Enhanced communication schemes for upcoming architectures
  - Knights Landing with MCDRAM\*
  - CAPI\*
- Extended topology-aware collectives
- Extended Energy-aware designs and Virtualization Support
- Extended Support for MPI Tools Interface (as in MPI 3.1)
- Extended Checkpoint-Restart and migration support with SCR
- Support for \* features will be available in future MVAPICH2 Releases

## **Thank You!**

subramoni.1@osu.edu

http://web.cse.ohio-state.edu/~subramon

Network-Based Computing Laboratory <a href="http://nowlab.cse.ohio-state.edu/">http://nowlab.cse.ohio-state.edu/</a>



The High-Performance MPI/PGAS Project <a href="http://mvapich.cse.ohio-state.edu/">http://mvapich.cse.ohio-state.edu/</a>