The MVAPICH2 Project
Latest Status and Future Plans

Presentation at MPICH BoF (SC ‘17)

by

Hari Subramoni
The Ohio State University
E-mail: subramon@cse.ohio-state.edu

http://www.cse.ohio-state.edu/~subramon
Overview of the MVAPICH2 Project

• High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)
 – MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Started in 2001, First version available in 2002
 – MVAPICH2-X (MPI + PGAS), Available since 2011
 – Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014
 – Support for Virtualization (MVAPICH2-Virt), Available since 2015
 – Support for Energy-Awareness (MVAPICH2-EA), Available since 2015
 – Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015
 – Used by more than 2,825 organizations in 85 countries
 – More than 433,000 (> 0.4 million) downloads from the OSU site directly
 – Empowering many TOP500 clusters (June ‘17 ranking)
 • 1st, 10,649,600-core (Sunway TaihuLight) at National Supercomputing Center in Wuxi, China
 • 15th, 241,108-core (Pleiades) at NASA
 • 20th, 462,462-core (Stampede) at TACC
 • 44th, 74,520-core (Tsubame 2.5) at Tokyo Institute of Technology
 – Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)
 – http://mvapich.cse.ohio-state.edu

• Empowering Top500 systems for over a decade
 – System-X from Virginia Tech (3rd in Nov 2003, 2,200 processors, 12.25 TFlops) ->
 – Sunway TaihuLight (1st in Jun’17, 10M cores, 100 PFlops)
MVAPICH2 Release Timeline and Downloads

Number of Downloads vs. Timeline

- MV 0.9.4
- MV2 0.9.0
- MV2 0.9.8
- MV2 1.0
- MV2 1.1
- MV2 1.1.0.3
- MV2 1.1.1
- MV2 1.4
- MV2 1.5
- MV2 1.6
- MV2 1.7
- MV2 1.8
- MV2 1.9
- MV2 1.9.0
- MV2-MIC 2.0
- MV2-Virt 2.2
- MV2-2.3b
- MV2-GDR 2.3a
MVAPICH2 Architecture

High Performance Parallel Programming Models

- Message Passing Interface (MPI)
- PGAS (UPC, OpenSHMEN, CAF, UPC++)
- Hybrid --- MPI + X (MPI + PGAS + OpenMP/Cilk)

High Performance and Scalable Communication Runtime

Diverse APIs and Mechanisms

- Point-to-point Primitives
- Collectives Algorithms
- Job Startup
- Energy-Awareness
- Remote Memory Access
- I/O and File Systems
- Fault Tolerance
- Virtualization
- Active Messages
- Introspection & Analysis

Support for Modern Networking Technology (InfiniBand, iWARP, RoCE, OmniPath)

- Transport Protocols: RC, XRC, UD, DC
- Modern Features: UMR, ODP*, SR-IOV, Multi Rail

Support for Modern Multi-/Many-core Architectures (Intel-Xeon, OpenPower, Xeon-Phi (MIC, KNL*), NVIDIA GPGPU)

- Transport Mechanisms: Shared Memory, CMA, IVSHMEM
- Modern Features: MCDRAM*, NVLink*, CAPI*

* Upcoming
MVAPICH2 Software Family

High-Performance Parallel Programming Libraries

<table>
<thead>
<tr>
<th>Library</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVAPICH2</td>
<td>Support for InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE</td>
</tr>
<tr>
<td>MVAPICH2-X</td>
<td>Advanced MPI features, OSU INAM, PGAS (OpenSHMEM, UPC, UPC++, and CAF), and MPI+PGAS programming models with unified communication runtime</td>
</tr>
<tr>
<td>MVAPICH2-GDR</td>
<td>Optimized MPI for clusters with NVIDIA GPUs</td>
</tr>
<tr>
<td>MVAPICH2-Virt</td>
<td>High-performance and scalable MPI for hypervisor and container based HPC cloud</td>
</tr>
<tr>
<td>MVAPICH2-EA</td>
<td>Energy aware and High-performance MPI</td>
</tr>
<tr>
<td>MVAPICH2-MIC</td>
<td>Optimized MPI for clusters with Intel KNC</td>
</tr>
</tbody>
</table>

Microbenchmarks

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMB</td>
<td>Microbenchmarks suite to evaluate MPI and PGAS (OpenSHMEM, UPC, and UPC++) libraries for CPUs and GPUs</td>
</tr>
</tbody>
</table>

Tools

<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSU INAM</td>
<td>Network monitoring, profiling, and analysis for clusters with MPI and scheduler integration</td>
</tr>
<tr>
<td>OEMT</td>
<td>Utility to measure the energy consumption of MPI applications</td>
</tr>
</tbody>
</table>
MVAPICH2 – Basic MPI

Fast Startup on Emerging Many-Cores

![Graph showing Fast Startup on Emerging Many-Cores](image)

Enhanced Intra-node Performance for ARM

![Graph showing Enhanced Intra-node Performance for ARM](image)

Enhanced Inter-node Performance for OpenPOWER

![Graph showing Enhanced Inter-node Performance for OpenPOWER](image)

- Major Features and Enhancements in MVAPICH2 2.3b released on 08/10/2017
 - Enhanced performance for point-to-point and RMA operations
 - Enhanced process to core mapping for many-cores
 - Improved support for emerging many-core architectures (ARM, OpenPOWER, KNL)
 - Improve launch time for large-scale jobs with mpirun_rsh
 - Add support for non-blocking Allreduce using Mellanox SHARP
 - Enhanced collective tuning for various Knight’s Landing and Intel Omni-Path based systems
 - Bebop@ANL, Bridges@PSC, and Stampede2@TACC systems
 - Enhance support for MPI_T PVARs and CVARs
Enhanced MPI_Bcast for Emerging Many-Core Platforms with Optimized CMA-based Design

Major Features and Enhancements in MVAPICH2-X 2.3b released on 10/30/2017

- **MPI Features**
 - Based on MVAPICH2 2.3b
 - Optimized support for Skylake, ARM, and OpenPOWER architecture

- **MPI (Advanced) Features**
 - Support Data Partitioning-based Multi-Leader Design (DPML) for MPI collectives
 - Support Contention Aware Kernel-Assisted MPI collectives
 - Support for OSU InfiniBand Network Analysis and Management (OSU INAM) Tool v0.9.2

- **OpenSHMEM Features**
 - Based on OpenSHMEM reference implementation 1.3
 - Support Non-Blocking remote memory access routines
MVAPICH2-GDR – Optimized MPI for clusters with NVIDIA GPUs

- Major Features and Enhancements in MVAPICH2-GDR 2.3a released on 11/09/2017
 - Support for CUDA 9.0, Volta (V100) GPU, and OpenPOWER with NVLink
 - Efficient Multiple CUDA stream-based IPC communication
 - Enhanced performance of GPU-based point-to-point communication
 - Leverage Linux CMA feature for enhanced host-based communication
 - Enhanced performance of MPI_Allreduce for GPU-resident data
 - InfiniBand Multicast based designs for GPU-based broadcast and streaming applications
 - Efficient broadcast designs for Deep Learning applications
 - Enhanced collective tuning on Xeon, OpenPOWER, and NVIDIA DGX-1 systems
Virtualization has many benefits
- Fault-tolerance
- Job migration
- Compaction

Have not been very popular in HPC due to overhead associated with Virtualization

New SR-IOV (Single Root – IO Virtualization) support available with Mellanox InfiniBand adapters changes the field

Enhanced MVAPICH2 support for SR-IOV

MVAPICH2-Virt 2.2 supports:
- OpenStack, Docker, and singularity
MVAPICH2 – Plans for Exascale

- Performance and Memory scalability toward 1M cores
- Hybrid programming (MPI + OpenSHMEM, MPI + UPC, MPI + CAF ...)
 - MPI + Task*
- Enhanced Optimization for GPU Support and Accelerators
- Taking advantage of advanced features of Mellanox InfiniBand
 - Multi-host Adapters*
 - Hardware-based Tag Matching*
- Enhanced communication schemes for upcoming architectures
 - Knights Landing with MCDRAM*
 - CAPI*
- Extended topology-aware collectives
- Extended Energy-aware designs and Virtualization Support
- Extended Support for MPI Tools Interface (as in MPI 3.1)
- Extended Checkpoint-Restart and migration support with SCR
- Support for * features will be available in future MVAPICH2 Releases
Thank You!

subramoni.1@osu.edu
http://web.cse.ohio-state.edu/~subramon

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/