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• Substantial impact on designing and utilizing modern data management and 

processing systems in multiple tiers 

– Front-end data accessing and serving (Online) 

• Memcached + DB (e.g. MySQL), HBase 

– Back-end data analytics (Offline) 

• HDFS, MapReduce, Spark 

Mellanox Booth (SC '15) 

Data Processing and Management on Modern Clusters 
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Spark - An Example of Back-end Data Processing Middleware 

• An in-memory data-processing 
framework  

– Iterative machine learning jobs  

– Interactive data analytics  

– Scala based Implementation 

– Standalone, YARN, Mesos 

• Scalable, communication and 
I/O intensive 

– Wide dependencies between 
Resilient Distributed Datasets 
(RDDs) 

– MapReduce-like shuffle 
operations to repartition RDDs  

– Sockets based communication 

Mellanox Booth (SC '15) 

http://spark.apache.org 

3 

http://spark.apache.org


Mellanox Booth (SC '15) 4 

Memcached - An Example of Front-end Data Management 
Middleware 

• Three-layer architecture of Web 2.0 

– Web Servers, Memcached Servers, Database Servers 

• Distributed Caching Layer 

– Allows to aggregate spare memory from multiple nodes 

– General purpose 

• Typically used to cache database queries, results of API calls 

• Scalable model, but typical usage very network intensive 

 

Main 

memory
CPUs

SSD HDD

High Performance 
Networks

... ...

...

Main 

memory
CPUs

SSD HDD

Main 

memory
CPUs

SSD HDD

Main 

memory
CPUs

SSD HDD

Main 

memory
CPUs

SSD HDD
!"#$%"$#&

Web Frontend Servers 
(Memcached Clients)

(Memcached Servers)

(Database Servers)

High 

Performance 

Networks

High 

Performance 

Networks
Internet 



• High End Computing (HEC) is growing dramatically 

– High Performance Computing  

– Big Data Computing 

• Technology Advancement 

– Multi-core/many-core technologies 

– Remote Direct Memory Access (RDMA)-enabled 

networking (InfiniBand and RoCE) 

– Solid State Drives (SSDs), Non-Volatile Random-Access 

Memory (NVRAM), NVMe-SSD 

– Accelerators (NVIDIA GPGPUs and Intel Xeon Phi) 

Drivers for Modern HPC Clusters 

Tianhe – 2  Titan Stampede Tianhe – 1A 
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• Challenges for Accelerating Big Data Processing  

• Accelerating Big Data Processing on RDMA-enabled High-

Performance Interconnects 

– RDMA-enhanced Designs for HDFS, MapReduce, Spark, and Memcached 

• Accelerating Big Data Processing on High-Performance Storage 

– Enhanced Designs for HDFS and MapReduce over Lustre 

– SSD-assisted Hybrid Memory for RDMA-based Memcached 

• The High-Performance Big Data (HiBD) Project 

• Conclusion and Q&A 

Presentation Outline 
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How Can HPC Clusters with High-Performance Interconnect 
and Storage Architectures Benefit Big Data Applications? 

Bring HPC and Big Data processing into a 
“convergent trajectory”! 

What are the major 

bottlenecks in 

current Big Data 

processing 

middleware (e.g. 

Hadoop, Spark, and 

Memcached)? 

Can the bottlenecks 
be alleviated with 

new designs by 
taking advantage of 
HPC technologies? 

Can RDMA-enabled 

high-performance 

interconnects  

benefit Big Data 

processing? 

Can HPC Clusters with 

high-performance 

storage systems (e.g. 

SSD, parallel file 

systems) benefit Big 

Data applications? 

How much 

performance 

benefits can be 

achieved through 

enhanced designs? 

How to design 

benchmarks for  

evaluating the 

performance of 

Big Data 

middleware on 

HPC clusters? 



Big Data Middleware 
(HDFS, MapReduce, HBase, Spark  and Memcached) 

Networking Technologies 

(InfiniBand, 1/10/40GigE 
and Intelligent NICs) 

 
Storage Technologies 

(HDD and SSD) 

Programming Models 
(Sockets) 

Applications 

Commodity Computing System 
Architectures 

(Multi- and Many-core 
architectures and accelerators) 

Other Protocols? 

Communication and I/O Library 

Point-to-Point 
Communication 

QoS 

Threaded Models 
and Synchronization 

Fault-Tolerance I/O and File Systems 

Virtualization 

Benchmarks 

RDMA Protocol 

Challenges in Designing Communication and I/O 
Libraries for Big Data Systems 
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• Challenges for Accelerating Big Data Processing  

• Accelerating Big Data Processing on RDMA-enabled High-

Performance Interconnects 

– RDMA-enhanced Designs for HDFS, MapReduce, Spark, and Memcached 

• Accelerating Big Data Processing on High-Performance Storage 

– Enhanced Designs for HDFS and MapReduce over Lustre 

– SSD-assisted Hybrid Memory for RDMA-based Memcached 

• The High-Performance Big Data (HiBD) Project 

• Conclusion and Q&A 

Presentation Outline 

Mellanox Booth (SC '15) 10 



Design Overview of HDFS with RDMA 

HDFS 

Verbs 

RDMA Capable Networks 
(IB, 10GE/ iWARP, RoCE ..) 

Applications 

1/10 GigE, IPoIB  
Network 

Java Socket  
Interface 

Java Native Interface (JNI) 

Write Others 

 
OSU Design 

 

• Design Features 

– RDMA-based HDFS 
write 

– RDMA-based HDFS 
replication 

– Parallel replication 
support 

– On-demand connection 
setup 

– InfiniBand/RoCE 
support 
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N. S. Islam, M. W. Rahman, J. Jose, R. Rajachandrasekar, H. Wang, H. Subramoni, C. Murthy and D. K. Panda , 

High Performance RDMA-Based Design of HDFS over InfiniBand , Supercomputing (SC), Nov 2012 

 N. Islam, X. Lu, W. Rahman, and D. K. Panda, SOR-HDFS: A SEDA-based Approach to Maximize Overlapping in 

RDMA-Enhanced HDFS,  HPDC '14,  June 2014 
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Evaluations using Enhanced DFSIO of Intel HiBench on 
TACC-Stampede 

• Cluster with 64 DataNodes, single HDD per node 

– 64% improvement in throughput over IPoIB (FDR) for 256GB file size 

– 37% improvement in latency over IPoIB (FDR) for 256GB file size 
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Design Overview of MapReduce with RDMA 
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• Design Features 

– RDMA-based shuffle 

– Prefetching and caching map 
output 

– Efficient Shuffle Algorithms 

– In-memory merge 

– On-demand Shuffle 
Adjustment 

– Hybrid overlapping 

• map, shuffle, and merge 

• shuffle, merge, and reduce 

– On-demand connection setup 

– InfiniBand/RoCE support 
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M. W. Rahman, X. Lu, N. S. Islam, and D. K. Panda, HOMR: A Hybrid Approach to Exploit Maximum Overlapping 

in MapReduce over High Performance Interconnects, ICS, June 2014. 



• 50% improvement in Self Join over IPoIB (QDR) for 80 GB data size 

• 49% improvement in Sequence Count over IPoIB (QDR) for 30 GB data size 

Evaluations using PUMA Workload 
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Design Overview of Spark with RDMA 

• Design Features 

– RDMA based shuffle 

– SEDA-based plugins 

– Dynamic connection 
management and sharing 

– Non-blocking and out-of-
order data transfer 

– Off-JVM-heap buffer 
management 

– InfiniBand/RoCE support 
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• Enables high performance RDMA communication, while supporting traditional socket 
interface 

• JNI Layer bridges Scala based Spark with communication library written in native code 

 X. Lu, M. W. Rahman, N. Islam, D. Shankar, and D. K. Panda, Accelerating Spark with RDMA for Big Data 

Processing: Early Experiences, Int'l Symposium on High Performance Interconnects (HotI'14), August 2014 
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Performance Evaluation on TACC Stampede - SortByTest 

• Intel SandyBridge + FDR, 16 Worker Nodes, 256 Cores, (256M 256R) 

• RDMA-based design for Spark 1.4.0  

• RDMA vs. IPoIB with 256 concurrent tasks, single disk per node and 

RamDisk. For SortByKey Test: 

– Shuffle time reduced by up to 77% over IPoIB (56Gbps)  

– Total time reduced by up to 58% over IPoIB (56Gbps)  

 

16 Worker Nodes, SortByTest Shuffle Time 16 Worker Nodes, SortByTest Total Time 
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Memcached-RDMA Design 

• Server and client perform a negotiation protocol 

– Master thread assigns clients to appropriate worker thread 

• Once a client is assigned a verbs worker thread, it can communicate directly 
and is “bound” to that thread 

• All other Memcached data structures are shared among RDMA and Sockets 
worker threads 

• Native IB-verbs-level Design and evaluation with 

– Server : Memcached (http://memcached.org) 

– Client : libmemcached (http://libmemcached.org) 

– Different networks and protocols: 10GigE,  IPoIB, native IB (RC, UD) 
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No. of Clients 

• Memcached Get latency 

– 4 bytes OSU-IB: 2.84 us; IPoIB: 75.53 us 

– 2K bytes OSU-IB: 4.49 us; IPoIB: 123.42 us 

• Memcached Throughput (4bytes) 

– 4080 clients OSU-IB: 556 Kops/sec, IPoIB: 233 Kops/s 

– Nearly 2X improvement in throughput 

 

Memcached GET Latency Memcached Throughput 

Memcached Performance (TACC Stampede) 

Experiments on TACC Stampede (Intel SandyBridge Cluster, IB: FDR) 

Latency Reduced  
by nearly 20X 

2X 
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• Challenges for Accelerating Big Data Processing  

• Accelerating Big Data Processing on RDMA-enabled High-

Performance Interconnects 

– RDMA-enhanced Designs for HDFS, MapReduce, Spark, and Memcached 

• Accelerating Big Data Processing on High-Performance Storage 

– Enhanced Designs for HDFS and MapReduce over Lustre 

– SSD-assisted Hybrid Memory for RDMA-based Memcached 

• The High-Performance Big Data (HiBD) Project 

• Conclusion and Q&A 

Presentation Outline 
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Optimize I/O Performance for Big Data Applications with 
High-Performance Storage on HPC Clusters 

MetaData Servers 

Object Storage Servers 

Compute Nodes 

App Master 

Map Reduce 

RAM 

Disk 
Lustre Client 

Lustre Setup 

• HPC Cluster Deployment 
– Hybrid topological solution of Beowulf 

architecture with separate I/O nodes 
– Lean compute nodes with light OS; more 

memory space; small local storage 
– Sub-cluster of dedicated I/O nodes with parallel 

file systems, such as Lustre 

• HDFS over Heterogeneous Storage 
– RAMDisk, SSD, HDD, Lustre as data directories 

• MapReduce over Lustre 
– Local disk is used as the intermediate data 

directory 
– Lustre is used as the intermediate data 

directory 

• Hybrid Memcached with RAM + SSD 
20 Mellanox Booth (SC '15) 
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Triple-H 
 

Heterogeneous Storage 
 

• Design Features 

– Three modes 

• Default (HHH) 

• In-Memory (HHH-M) 

• Lustre-Integrated (HHH-L) 

– Policies to efficiently utilize the 

heterogeneous storage devices 

• RAM, SSD, HDD, Lustre 

– Eviction/Promotion based on 

data usage pattern 

– Hybrid Replication 

– Lustre-Integrated mode: 

• Lustre-based fault-tolerance 

 
21 

Enhanced HDFS with In-memory and Heterogeneous 
Storage 

Hybrid 

Replication 

Data Placement Policies 

Eviction/ 

Promotion 

RAM Disk SSD HDD 

Lustre 
 

N. Islam, X. Lu, M. W. Rahman, D. Shankar, and D. K. Panda, Triple-H:  A Hybrid Approach to Accelerate HDFS 

on HPC Clusters with Heterogeneous Storage Architecture, CCGrid ’15,  May 2015 

Applications 
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• For 160GB TestDFSIO in 32 nodes 

– Write Throughput: 7x improvement 

over IPoIB (FDR) 

– Read Throughput: 2x improvement 

over IPoIB (FDR) 

 

 

Performance Improvement on TACC Stampede (HHH) 

• For 120GB RandomWriter in 32 

nodes 

– 3x improvement over IPoIB (QDR) 
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Increased by 7x 

Increased by 2x 
Reduced by 3x 
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Performance Improvement on SDSC Gordon (HHH vs. Tachyon) 

• RandomWriter: 200GB on 32 SSD Nodes (QDR) 

– HHH reduces the execution time by 47% over Tachyon-WTC (IPoIB)), 56% over HDFS (IPoIB) 

• Sort: 200GB on 32 SSD Nodes (QDR) 

– HHH reduces the execution time by 19% over Tachyon-WTC (IPoIB), 31% over HDFS (IPoIB) 
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Reduced by 47% Reduced by 19% 
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N. Islam, M. W. Rahman, X. Lu, D. Shankar, and D. K. Panda, Performance Characterization and Acceleration of In-Memory File 

Systems for Hadoop and Spark Applications on HPC Clusters, IEEE BigData ’15, October 2015 



Intermediate Data Directory 

Design Overview of Shuffle Strategies for MapReduce over 
Lustre 

Mellanox Booth (SC '15) 

• Design Features 

– Two shuffle approaches 

• Lustre read based shuffle 

• RDMA based shuffle 

– Hybrid shuffle algorithm to 
take benefit from both shuffle 
approaches 

– Dynamically adapts to the 
better shuffle approach for 
each shuffle request based on 
profiling values for each Lustre 
read operation 

– In-memory merge and 
overlapping of different phases 
are kept similar to RDMA-
enhanced MapReduce design 

24 
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M. W. Rahman, X. Lu, N. S. Islam, R. Rajachandrasekar, and D. K. Panda, High Performance Design of YARN 

MapReduce on Modern HPC Clusters with Lustre and RDMA, IPDPS, May 2015. 
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• For 500GB Sort in 64 nodes 

– 44% improvement over IPoIB (FDR) 

Performance Improvement of MapReduce over Lustre on 
TACC-Stampede 

Mellanox Booth (SC '15) 

• For 640GB Sort in 128 nodes 

– 48% improvement over IPoIB (FDR) 
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M. W. Rahman, X. Lu, N. S. Islam, R. Rajachandrasekar, and D. K. Panda, MapReduce over Lustre: Can RDMA-

based Approach Benefit?, Euro-Par, August 2014. 

• Local disk is used as the intermediate data directory 

Reduced by 48% Reduced by 44% 
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• For 80GB Sort in 8 nodes 

– 34% improvement over IPoIB (QDR) 

Case Study - Performance Improvement of MapReduce 
over Lustre on SDSC-Gordon 

Mellanox Booth (SC '15) 

• For 120GB TeraSort in 16 nodes 

– 25% improvement over IPoIB (QDR) 

• Lustre is used as the intermediate data directory 
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Overview of SSD-Assisted Hybrid RDMA-Memcached 
Design 

• Design Features 

• Hybrid slab allocation and 

management for higher data 

retention 

• Log-structured sequence of 

blocks flushed to SSD 

• SSD fast random read to 

achieve low latency object 

access 

• Uses LRU to evict data to SSD 
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– Memcached latency test with Zipf distribution, server with 1 GB memory, 32 KB key-value 

pair size, total size of data accessed is 1 GB (when data fits in memory) and 1.5 GB (when 

data does not fit in memory)  

– When data fits in memory: RDMA-Mem/Hybrid gives 5x improvement over IPoIB-Mem 

– When data does not fix in memory: RDMA-Hybrid gives 2x-2.5x over IPoIB/RDMA-Mem 

Performance Evaluation on SDSC Comet (IB FDR + SATA/NVMe SSDs) 
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• Challenges for Accelerating Big Data Processing  

• Accelerating Big Data Processing on RDMA-enabled High-

Performance Interconnects 

– RDMA-enhanced Designs for HDFS, MapReduce, Spark, and Memcached 

• Accelerating Big Data Processing on High-Performance Storage 

– Enhanced Designs for HDFS and MapReduce over Lustre 

– SSD-assisted Hybrid Memory for RDMA-based Memcached 

• The High-Performance Big Data (HiBD) Project 

• Conclusion and Q&A 

Presentation Outline 
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• RDMA for Apache Hadoop 2.x (RDMA-Hadoop-2.x) 

– Plugins for Apache and HDP Hadoop distributions 

• RDMA for Apache Hadoop 1.x (RDMA-Hadoop) 

• RDMA for Memcached (RDMA-Memcached) 

• OSU HiBD-Benchmarks (OHB) 

– HDFS and Memcached Micro-benchmarks 

• http://hibd.cse.ohio-state.edu 

• Users Base: 135 organizations from 20 countries 

• More than 13,300 downloads from the project site 

The High-Performance Big Data (HiBD) Project 
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Different Modes of RDMA for Apache Hadoop 2.x 

• HHH: Heterogeneous storage devices with hybrid replication schemes are supported in this mode of operation to 

have better fault-tolerance as well as performance. This mode is enabled by default in the package.  

• HHH-M: A high-performance in-memory based setup has been introduced in this package that can be utilized to 

perform all I/O operations in-memory and obtain as much performance benefit as possible.  

• HHH-L: With parallel file systems integrated, HHH-L mode can take advantage of the Lustre available in the cluster.  

• MapReduce over Lustre, with/without local disks: Besides, HDFS based solutions, this package also provides 

support to run MapReduce jobs on top of Lustre alone. Here, two different modes are introduced: with local disks 

and without local disks. 

• Running with Slurm and PBS: Supports deploying RDMA for Apache Hadoop 2.x with Slurm and PBS in different 

running modes (HHH, HHH-M, HHH-L, and MapReduce over Lustre). 



• Upcoming Releases of RDMA-enhanced Packages will support 

– CDH Plugin 

– Spark 

– HBase 

• Upcoming Releases of OSU HiBD Micro-Benchmarks (OHB) will support 

– MapReduce 

– RPC 

• Exploration of other components (Threading models, QoS, Virtualization, 

Accelerators, etc.) 

• Advanced designs with upper-level changes and optimizations 

Mellanox Booth (SC '15) 

Future Plans of OSU High Performance Big Data Project  
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• Discussed communication and I/O challenges in accelerating Big 

Data middleware 

• Presented initial designs to take advantage of InfiniBand/RDMA 

and high-performance storage architectures for Hadoop, Spark, 

and Memcached 

• Presented challenges in designing benchmarks 

• Results are promising  

• Many other open issues need to be solved  

• Will enable Big Data processing community to take advantage of 

modern HPC technologies to carry out their analytics in a fast and 

scalable manner  
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Concluding Remarks 
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An Additional Talk 

34 

• Tomorrow, Thursday (11:00-11:30am)  
• Exploiting Full Potential of GPU Clusters with InfiniBand 

using MVAPICH2-GDR 
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Thank You! 

The High-Performance Big Data Project 
http://hibd.cse.ohio-state.edu/ 
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Network-Based Computing Laboratory 
http://nowlab.cse.ohio-state.edu/ 

http://nowlab.cse.ohio-state.edu/
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