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• NVIDIA GPUs - main driving force for faster 

training of Deep Neural Networks (DNNs)

• The ImageNet Challenge - (ILSVRC)

• DNNs like AlexNet, ResNet, and VGG

• 90% of the ImageNet teams used GPUs in 2014*

• And, GPUs are growing in the HPC arena as well! 

– Top500 (May ‘21) 

Deep Learning, CPUs, and GPUs

*https://blogs.nvidia.com/blog/2014/09/07/imagenet/

https://www.top500.org/

Accelerator/CP Family
Performance Share

https://blogs.nvidia.com/blog/2014/09/07/imagenet/
https://www.top500.org/
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• Easily implement and experiment with Deep Neural Networks 
• Several Deep Learning (DL) frameworks have emerged

• PyTorch, TensorFlow, and MXNet are the major DL frameworks
• Focus on PyTorch in this work

• Most frameworks are optimized for NVIDIA GPUs (for now!)

• Distributed DL frameworks built on top of DL frameworks are 

gaining steam (e.g. Horovod, DeepSpeed)

Deep Learning Frameworks
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• MVAPICH2-GDR is an MPI library designed to efficiently support NVIDIA and 
AMD GPUs over Mellanox InfiniBand adapters
• Based on MVAPICH2

• Support for ARM, x86, and OpenPOWER 8/9 systems

• Support for many GPU features including:
• Non-Blocking Collectives

• CUDA managed memory

• GDRCOPY and Loopback

• CUDA IPC and registration cache

• Large-message collectives for DL frameworks

• More Information: http://mvapich.cse.ohio-state.edu/userguide/gdr/

Background: MVAPICH2-GDR

http://mvapich.cse.ohio-state.edu/userguide/gdr/
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• Based on LLNL Scalable Checkpoint Restart (SCR) library

• Built in collaboration with LLNL in a DOE SBIR Phase-I (currently)

Background: SCR-Exa

• Focus:

• New features on top of open-source SCR 

• Some new features go to SCR 

• Some new features remain in SCR-Exa

• Optimization foci:

• New applications (DL, ML, and AI) 

• Cloud environments

• New systems, schedulers, etc.

Image Courtesy: https://computing.llnl.gov/projects/scalable-checkpoint-restart-for-mpi/multilevel-checkpointing-research
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• Root Checkpoints/Restarts

• In standard distributed DL applications the root rank saves a 

checkpoint to the parallel file system (See top figure)

• For restarts, the root rank loads a checkpoint and MPI_Bcast’s it to 

all nodes in the job 

• SCR and SCR-Exa Checkpoints

• Checkpoints are saved to node-local storage (NLS)

• Every Nth checkpoint is “flushed” to the parallel file system

• Two redundancy schemes are used in this work:
• Single: Every rank saves the checkpoint to its own NLS only

• Partner: Every rank saves the checkpoint to its own NLS and the neighboring node’s 

NLS

• SCR and SCR-Exa Restarts

• Cached checkpoints within a job are used (bypassing the parallel file 

system)

Background: SCR-Exa

Saving SCR(-Exa) ckpt to NLS

Saving root ckpt on last training step of epoch
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Background: SCR-Exa (cont’d)

• SCR and SCR-Exa support hot and cold restarts

• A cold restart uses a checkpointing cache within the same allocation

• A hot restart replaces faulty nodes within the allocation with idle spare nodes (see below)

Job state before node failure Node failure Recovery from node failure
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Background: SCR-Exa for DL Applications
• Periodically saving a snapshot of a DL model’s parameters during training can save work in the event of 

interruptions

• DL training on a single machine often requires weeks or months to complete

• DL training at scale on HPC systems is more susceptible to hardware or software failures

• Single-machine DL training jobs can simply load/store the DL model every N epochs

• What about distributed training jobs? DL frameworks recommend the following naïve scheme:

• However, this scheme requires all ranks to block on rank 0 while it writes to the PFS every 

checkpoint_freq epochs!

• What if we add support for distributed multi-level checkpointing via SCR-Exa’s Python API?

0. for n in num_epochs:

1. if rank == 0 and n % checkpoint_freq == 0:

2. save_DNN()

3. MPI_Barrier()

4. …

5. if rank == 0 and interruption:

6. load_DNN()

7. MPI_Bcast(DNN_params)
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Background: Horovod

• Horovod is a distributed DNN training framework that employs data parallelism

• Acts as middleware between DL framework (Tensorflow, Pytorch, etc) and communication backend (MPI, NCCL, etc)

• Performance is strongly dependent on Allreduce

• Before carrying out evaluations, we have added full checkpointing support to EDSR and ResNet-50 training 
with Horovod and SCR-Exa
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• Horovod standardizes data-parallel 

training

• SCR-Exa can be used directly from 

the application layer

Full Program Stack
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Can we reduce the DNN checkpoint overhead 

by adding support for multi-level checkpointing 

into the distributed DL framework?

Problem Statement
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Adding SCR-Exa support to Horovod (Similar for torch.dist)
def save_checkpoint(epoch):

if scr.need_checkpoint():

...

# All processes tell SCR-Exa a new checkpoint is about to start

scr.start_output(name, scr.FLAG_CHECKPOINT)

...

# Get the full path and file name SCR-Exa will need to access the checkpoint file

newfname = scr.route_file(fname)

...

# Save DNN

torch.save(ddp_model.state_dict(), newfname)

...

# All processes tell SCR-Exa the checkpoint is over

scr.complete_output(valid)

def restart(epoch):

while True:

# Is there a checkpoint available?

if not scr.have_restart()

break

# All processes tell SCR-Exa that a new restart is about to start

name = scr.start_restart()

...

# Get the full path and file name SCR-Exa will need to access the checkpoint file

newfname = scr.route_file(fname)

...

# Load DNN

torch.load(newfname, map_location=map_location)

...

# All processes tell SCR-Exa the restart is over

scr.complete_restart(valid):

• SCR-Exa was directly applied to the 

Horovod training script

• In addition to the basic SCR-Exa code, a 

full SCR-Exa configuration needs to be 

defined

• Options such as asynchronous flush and the 

redundancy scheme are set here

• Our runs use the following config 

options:

• SCR_FLUSH_ASYNC=1

• SCR_COPY_TYPE=SINGLE

• SCR_FLUSH=10
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• Lassen Supercomputer at Lawrence Livermore National Laboratory 

• #17 on TOP500.org

• 792 GPU Nodes

• Two IBM POWER 9 processors

• 4 NVIDIA Volta GPUs (16 GB HBM2)

• NVIDIA NVLINK (GPU-GPU and CPU-GPU)

• 256 GB CPU Memory/Node

• Mellanox InfiniBand, EDR (12.5 GB/s)

Evaluation Platform
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Evaluation Platform

Courtesy: Performance Evaluation of MPI Libraries on GPU-enabled OpenPOWER Architectures: Early 

Experiences, IWOPH ‘19 
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• Deep Learning Frameworks

• PyTorch v1.9.0

• CUDA 10.2

• cuDNN 7.6.5

• Horovod Distributed Training middleware (0.22.1)

• MPI Library: MVAPICH2-GDR 2.3.6

• DL Models: EDSR from publicly-available github

• https://github.com/sanghyun-son/EDSR-PyTorch

Software Libraries

https://github.com/sanghyun-son/EDSR-PyTorch
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Performance Improvement: Save Ckpt

• We take the end-to-end training time of 100 epochs of ResNet-50 training with two distributed DL frameworks

• PyTorch’s distributed module

• Horovod

• Compared root ckpt method with SCR-Exa performance, with 1 ckpt per epoch

ResNet-50 PyTorch distributed module training time ResNet-50 Horovod training time
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Performance Improvement: Save Ckpt (Cont’d)

• Every 10th ckpt is flushed to the PFS with SCR-Exa

• Benefits are clearer when looking at % overhead

• SCR-Exa overhead remains below ~20%

• Root checkpointing overhead increases linearly 

with GPU count

• SCR-Exa introduces additional overhead below 4 

GPUs (1 node)

ResNet-50 Horovod ckpt overhead

ResNet-50 PyTorch distributed module ckpt overhead
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Performance Improvement: Save Ckpt (cont’d)

• We take the end-to-end training time of 100 epochs of EDSR training with only Horovod

• Again compared root ckpt method with SCR-Exa performance, with 1 ckpt per epoch

• Similar trends as ResNet-50

EDSR Horovod training time EDSR Horovod overhead
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Performance Improvement: Load Ckpt

• Now test ckpt load performance with cold restarts

• Restart training within the allocation every 10 epochs

Small-scale EDSR Horovod training time Large-scale EDSR Horovod training time
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Performance Improvement: Load Ckpt (cont’d)

• SCR-Exa significantly outperforms root restarts for cold checkpoints

• Performance improvement is due to restart caching

EDSR Horovod restart overhead
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Performance Improvement: Training Logs

• We want to ensure checkpoints are saved/loaded without affecting the DNN

• Take training accuracy logs with/without checkpointing with SCR-Exa

• Double-check with deterministic PyTorch and dependencies (i.e. cuDNN and NumPy)

ResNet-50 training logs with ckpt restart ResNet-50 training logs with deterministic ckpt restart
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Performance Improvement: Training Logs

• To demonstrate SCR-Exa’s hot restart capability, we simulated a node error every 10 epochs

• We ran with 8 nodes for root checkpointing, and 12 nodes for SCR-Exa (4 spare nodes)

ResNet-50 training logs with deterministic ckpt restart

• We expect SCR-Exa to withstand 

4 training failures before job 

failure

• We expect root checkpointing 

job to fail after the first error



SuperCheck 2021 30

• Introduction

• Background

• Research Challenges

• Methodologies

• Performance Evaluation

• Evaluation Platforms and Software Libraries

• Scaling Results

• Conclusion

Agenda



SuperCheck 2021 31

Conclusion

• For bandwidth-bound checkpointing functions (e.g. torch.save() for relatively small DNNs), root 
checkpointing is not scalable

• Multi-level checkpointing schemes can reduce dependence on the parallel filesystem

• HPC checkpointing tools such as SCR-Exa can be integrated with DL frameworks via Python 
bindings

• Neither root checkpointing nor SCR-Exa affect DNN convergence
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• Apply SCR-Exa to other parallelism schemes and distributed DL frameworks

• Introduce detailed profiling to better understand the performance difference 

between SCR-Exa and root checkpointing

Future Work
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Thank You!
q.anthony@x-scalesolutions.com 

http://x-scalesolutions.com/

mailto:q.anthony@x-scale-solutions.com
http://x-scalesolutions.com/

