M= SC21

St.Louis, |science
MO |& beyond.

g Multi-Level
Checkpomtmg for Dlstrlbuted

Quentin Anthony*, Donglai Dai

{g.anthony, d.dai}@x-scalesolutions.com
anthony.301@osu.edu

* This work has been done through an internship at X-ScaleSolutions while being a student at the Ohio State University ‘ ‘ ‘ ‘ ‘ ‘ ‘ _

Agenda

 Introduction

« Background

« Research Challenges
« Methodologies

« Performance Evaluation
« Evaluation Platforms and Software Libraries

 Scaling Results

Conclusion

-ScaleSolutions SuperCheck 2021)

Deep Learning, CPUs, and GPUs Accelerator/CP Family

Performance Share

« NVIDIA GPUs - main driving force for faster
training of Deep Neural Networks (DNNs)

* The ImageNet Challenge - (ILSVRC) © DA Testa 10

. NVIDIA Tesla P100
NVIDIA Tesla V100 SXM2
* DNNs like AlexNet, ResNet, and VGG @ NVIDIA Volta G100
@ NVIDIA Tesla K40
. % @ Intel Xeon Phi 5120D
* 90% of the ImageNet teams used GPUs in 2014 @ NVIDIA 2050
. NVIDIA Tesla K20x
‘ NVIDIA Tesla K80

* And, GPUs are growing in the HPC arena as well! @ PL21.5C2 T00Mb:
— Top500 (May “21) o

https://www.top500.org/

*https://blogs.nvidia.com/blog/2014/09/07/imagenet/

X-ScaleSolutions SuperCheck 2021 3

https://blogs.nvidia.com/blog/2014/09/07/imagenet/
https://www.top500.org/

Deep Learning Frameworks

« Easily implement and experiment with Deep Neural Networks
« Several Deep Learning (DL) frameworks have emerged

« PyTorch, TensorFlow, and MXNet are the major DL frameworks
* Focus on PyTorch in this work

« Most frameworks are optimized for NVIDIA GPUs (for now!)

« Distributed DL frameworks built on top of DL frameworks are
gaining steam (e.g. Horovod, DeepSpeed)

-ScaleSolutions SuperCheck 2021 4

Agenda

« Background
« Research Challenges
« Methodologies

« Performance Evaluation
« Evaluation Platforms and Software Libraries

 Scaling Results

Conclusion

X-ScaleSolutions SuperCheck 2021 5

Background: Distributed DNN Training

* Deep Neural Network training consists of two phases

* Forward pass

* Backward pass i(_g_)i

* Training is a compute intensive task S e e iy
d La rge datasets i- --------- i i- --------- i :""T.'.'.'_'.'.'.'.'-- '.'!_::'-:|""""""'!
i o ! | Machine 1 !
* Complex Deep Learning Models | . i (I
* MPI-driventraining is on the rise | Machine3 | | Mashine |
* Three approaches to Distribute DNN training Data Parallelism Model Parallelism

* Data Parallelism (focus of this paper)
* Model Parallelism

* Hybrid Parallelism

Hybrid Parallelism

Courtesy: https://blog.skymind.ai/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks/

(-ScaleSolutions SuperCheck 2021 6

Background: MVAPICH2-GDR

* MVAPICH2-GDR is an MPI library designed to efficiently support NVIDIA and
AMD GPUs over Mellanox InfiniBand adapters
* Based on MVAPICH?2
* Support for ARM, x86, and OpenPOWER 8/9 systems

* Support for many GPU features including:
* Non-Blocking Collectives
* CUDA managed memory
* GDRCOPY and Loopback
* CUDA IPC and registration cache
* Large-message collectives for DL frameworks

e More Information: http://mvapich.cse.ohio-state.edu/userguide/gdr/

X-ScaleSolutions SuperCheck 2021 7

http://mvapich.cse.ohio-state.edu/userguide/gdr/

Background: SCR-Exa

* Based on LLNL Scalable Checkpoint Restart (SCR) library
* Builtin collaboration with LLNL in a DOE SBIR Phase-I (currently)

-B-RAM D?Sk Single 100’000
° F . ——RAM Disk Partner
Ocus. =«RAM Disk XOR
—-55D Single
* New features on top of open-source SCR ~4-SSD XOR 10,000

SSD Partner
-8-Parallel File System (160 GB/s peak)

* Some new features go to SCR

. 1,000
* Some new features remain in SCR-Exa

GB/s

* Optimization foci:
* New applications (DL, ML, and Al)

100

* Cloud environments 10

* New systems, schedulers, etc. "
1

2 4 8 16 32 64 128 256 512
Nodes

Image Courtesy: https://computing.linl.gov/projects/scalable-checkpoint-restart-for-mpi/multilevel-checkpointing-research

-ScaleSolutions SuperCheck 2021 3

Background: SCR-Exa

® Root Checkpoints/Restarts

® Instandard distributed DL applications the root rank saves a
checkpoint to the parallel file system (See top figure)
® For restarts, the root rank loads a checkpoint and MPI_Bcast’s it to

all nodes in the job

® SCR and SCR-Exa Checkpoints

® Checkpoints are saved to node-local storage (NLS)
® Every Nth checkpoint is “flushed” to the parallel file system

® Two redundancy schemes are used in this work:

* Single: Every rank saves the checkpoint to its own NLS only

¢ Partner: Every rank saves the checkpoint to its own NLS and the neighboring node’s

NLS

® SCR and SCR-Exa Restarts

® Cached checkpoints within a job are used (bypassing the parallel file

system)

Store Ckpt to PFS

GPU 1 F/B Pass |
GPU 2 F/B Pass
GPU 3 r F/B Pass

— Stall

Saving root ckpt on last training step of epoch

Store Ckpt NLS

A

A

f_l_\
GPU O F/B Pass
GPU 1 F/B Pass
GPU 2 F/B Pass
e <
GPU 3 F/B Pass

Saving SCR(-Exa) ckpt to NLS

Improvement

X-ScaleSolutions SuperCheck 2021 9

Background: SCR-Exa (cont’d)

® SCR and SCR-Exa support hot and cold restarts

® Acold restart uses a checkpointing cache within the same allocation
® Ahot restart replaces faulty nodes within the allocation with idle spare nodes (see below)

‘ Node failure ‘ Recovery from node failure

SuperCheck 2021 10

Job state before node failure

Background: SCR-Exa for DL Applications

Periodically saving a snapshot of a DL model’s parameters during training can save work in the event of

interruptions
® DL training on a single machine often requires weeks or months to complete

® DL training at scale on HPC systems is more susceptible to hardware or software failures
® Single-machine DL training jobs can simply load/store the DL model every N epochs
® What about distributed training jobs? DL frameworks recommend the following naive scheme:

0. for nin num_epochs:

1. if rank == 0 and n % checkpoint_freq == 0:
save_DNN()

MPI1_Barrier()

iIf rank == 0 and interruption:
load _DNN()
MPI_Bcast(DNN_params)

2
3
4,
5
6
7
® However, this scheme requires all ranks to block on rank 0 while it writes to the PFS every
checkpoint_freq epochs!

® What if we add support for distributed multi-level checkpointing via SCR-Exa’s Python API?

-ScaleSolutions SuperCheck 2021 11

Background: Horovod

® Horovod is a distributed DNN training framework that employs data parallelism
® Acts as middleware between DL framework (Tensorflow, Pytorch, etc) and communication backend (MPI, NCCL, etc)

® Performance is strongly dependent on Allreduce

® Before carrying out evaluations, we have added full checkpointing support to EDSR and ResNet-50 training
with Horovod and SCR-Exa

X-ScaleSolutions SuperCheck 2021 12

Full Program Stack

i Application Models)
* Horovod standardizes data-parallel ResNet-50 EDSR
. . - J
training p ~
Deep Learning Frameworks
PyTorch
o J
* SCR-Exa can be used d|reCt|y from d Distributed Training Middleware (Horovod) b
the application layer MPI SCR-Exa
N /
/" HPC Platforms High-Performance Interconnects \
I— ————————————— |
CPUs i| Omni-Path NVLink :
I
GPUs I| InfiniBand PCle :
_ o ————= 1)

X-ScaleSolutions SuperCheck 2021 13

Agenda

* |ntroduction

e Background

* Research Challenges
« Methodologies

« Performance Evaluation
« Evaluation Platforms and Software Libraries

 Scaling Results

Conclusion

YScaleSolutionse " superCheck2022

Problem Statement

Can we reduce the DNN checkpoint overhead

by adding support for multi-level checkpointing
into the distributed DL framework?

Agenda

* |ntroduction

e Background

« Research Challenges
 Methodologies

« Performance Evaluation
« Evaluation Platforms and Software Libraries

 Scaling Results

Conclusion

YScaleSolutionse " superCheck2022 45

Adding SCR-Exa support to Horovod (Similar for torch.dist)

SCR-Exa was directly applied to the
Horovod training script

In addition to the basic SCR-Exa code, a
full SCR-Exa configuration needs to be
defined

® Options such as asynchronous flush and the
redundancy scheme are set here

Our runs use the following config
options:

® SCR_FLUSH_ASYNC=1

® SCR_COPY_TYPE=SINGLE

® SCR_FLUSH=10

def save checkpoint (epoch) :
if scr.need_checkpoint():

All processes tell SCR-Exa a new checkpoint is about to start
scr.start_putput(name, scr.FLAG_CHECKPOINT)

Get the full path and file name SCR-Exa will need to access the checkpoint file
newfname = scr.route_file (fname)

Save DNN
torch.save (ddp_model.state dict(), newfname)

All processes tell SCR-Exa the checkpoint is over
scr.complete output(valid)

def restart(epoch) :
while True:
Is there a checkpoint available?
if not scr.have_restart()
break
All processes tell SCR-Exa that a new restart is about to start
name = scr.start restart()

Get the full path and file name SCR-Exa will need to access the checkpoint file
newfname = scr.route file(fname)

Load DNN
torch.load (newfname, map location=map location)

All processes tell SCR-Exa the restart is over
scr.complete restart(valid):

X-ScaleSolutions SuperCheck 2021 17

Agenda

* |ntroduction

e Background

« Research Challenges
 Methodologies

« Performance Evaluation
« Evaluation Platforms and Software Libraries

 Scaling Results

Conclusion

YScaleSolutionse ~ superCheck2022 49

Evaluation Platform

« Lassen Supercomputer at Lawrence Livermore National Laboratory
- #17 on TOP500.0rg
- 792 GPU Nodes
- Two IBM POWER 9 processors
- 4 NVIDIA Volta GPUs (16 GB HBM2)
- NVIDIA NVLINK (GPU-GPU and CPU-GPU)
- 256 GB CPU Memory/Node
- Mellanox InfiniBand, EDR (12.5 GB/s)

X-ScaleSolutions SuperCheck 2021 19

Evaluation Platform

<> 3-lane NVLink =<=— X-Bus =-> 8-lane PCle Gen4 = > |nfiniband EDR
(75 GB/s) (64 GB/s) (16 GB/s) (12.5 GB/s)

#

.‘.,. .‘.
Port0 Port1

Courtesy: Performance Evaluation of MPI Libraries on GPU-enabled OpenPOWER Architectures: Early
Experiences, IWOPH ‘19

X-ScaleSolutions

Software Libraries
* Deep Learning Frameworks
e PyTorchv1.9.0
* CUDA10.2
* CuDNN 7.6.5
* Horovod Distributed Training middleware (0.22.1)

* MPI Library: MVAPICH2-GDR 2.3.6

DL Models: EDSR from publicly-available github

* https://github.com/sanghyun-son/EDSR-PyTorch

X-ScaleSolutions SuperCheck 2021 21

https://github.com/sanghyun-son/EDSR-PyTorch

Agenda

* |ntroduction

e Background

« Research Challenges
 Methodologies

« Performance Evaluation
« Evaluation Platforms and Software Libraries
« Scaling Results

Conclusion

YScaleSolutionse " superCheck2022 o

Performance Improvement: Save Ckpt

® We take the end-to-end training time of 100 epochs of ResNet-50 training with two distributed DL frameworks

® PyTorch’s distributed module

® Horovod

® Compared root ckpt method with SCR-Exa performance, with 1 ckpt per epoch

B NoCkpt Root Ckpt SCR-Exa Ckpt

300
250
200

150

100
50 I
i I e - _
1 2 4 8

Time (min)

16 32 64 128
GPUs

ResNet-50 PyTorch distributed module training time

W NoCkpt Root Ckpt SCR-Exa Ckpt
250

200

100
50 I
0 1 v . _
1 2 4 8

16 32 64 128

Time (min)
Y
Ul
o

GPUs

ResNet-50 Horovod training time

X-ScaleSolutions SuperCheck 2021 73

Performance Improvement: Save Ckpt (Cont’d)

Root Ckpt SCR-Exa Ckpt

9 o))
o O O

e Every 10t ckpt is flushed to the PFS with SCR-Exa

% Overhead
NoW S
o O

(I
o

e Benefits are clearer when looking at % overhead

o

1 2 4 8 16 32 64 128
GPUs

ResNet-50 PyTorch distributed module ckpt overhead
Root Ckpt SCR Ckpt

e SCR-Exa overhead remains below ~20%

60

e Root checkpointing overhead increases linearly 50
with GPU count E 40
o 30
>
3 20
e SCR-Exa introduces additional overhead below 4 10
GPUs (1 node) 0
1 2 4 8 16 32 64 128
GPUs

ResNet-50 Horovod ckpt overhead

X-ScaleSolutions SuperCheck 2021 24

Performance Improvement: Save Ckpt (cont’d)

® We take the end-to-end training time of 100 epochs of EDSR training with only Horovod
® Again compared root ckpt method with SCR-Exa performance, with 1 ckpt per epoch

® Similar trends as ResNet-50

B NoCkpt Root Ckpt SCR-Exa Ckpt Root Ckpt SCR-Exa Ckpt

80 90

70 80

60 70

.E 50 g 60

£ 20 £ 50
) g

£ 30 3 40
— o

20 = 30

10 I 20

. B] 10

64 128 256 512 1024 0

GPUs 1 4 16 64 256 1024
GPUs
EDSR Horovod training time EDSR Horovod overhead

X-ScaleSolutions SuperCheck 2021 75

Performance Improvement: Load Ckpt

* Now test ckpt load performance with cold restarts

e Restart training within the allocation every 10 epochs

B NoRestart Root Restart SCR-Exa Restart B NoRestart Root Restart SCR-Exa Restart
3500 100
3000 90
80
2500 70
= 2000 — 60
£ £ 50
= 1000 = 30
20
i 1 I B
0] 1 — 0]]
1 2 4 8 16 32 64 128 256 512 1024
GPUs # GPUs
Small-scale EDSR Horovod training time Large-scale EDSR Horovod training time

X-ScaleSolutions SuperCheck 2021 26

Performance Improvement: Load Ckpt (cont’d)

* SCR-Exa significantly outperforms root restarts for cold checkpoints
 Performance improvement is due to restart caching

—+—Root Restart SCR-Exa Restart

250

200

% Overhead
[y
wun
o

=
o
o

u
o

o

16 32 64 128 256 512 1024
GPUs

EDSR Horovod restart overhead

YScaleSolutionse superCheck2022 oy

Performance Improvement: Training Logs

* We want to ensure checkpoints are saved/loaded without affecting the DNN
* Take training accuracy logs with/without checkpointing with SCR-Exa

* Double-check with deterministic PyTorch and dependencies (i.e. cuDNN and NumPy)

—Root Ckpt - -NoCkpt ——SCR-Exa Ckpt @w» NoCkpt ===Root Ckpt ----SCR-Exa Ckpt

100 100

90 90
80 80
70 70

60 60

% Accuracy

50 50

% Training Accuracy

40 40

30 30

20 20

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Epoch Epoch
ResNet-50 training logs with ckpt restart ResNet-50 training logs with deterministic ckpt restart

X-ScaleSolutions SuperCheck 2021)8

Performance Improvement: Training Logs

To demonstrate SCR-Exa’s hot restart capability, we simulated a node error every 10 epochs

We ran with 8 nodes for root checkpointing, and 12 nodes for SCR-Exa (4 spare nodes)

We expect SCR-Exa to withstand
4 training failures before job
failure

We expect root checkpointing
job to fail after the first error

% Accuracy

80

70

60

50

40

30

20

@& SCR-Exa Ckpt Root Ckpt ¥ Job Failure

0 10 20 30 40 50 60
Epoch

ResNet-50 training logs with deterministic ckpt restart

-ScaleSolutions SuperCheck 2021 29

Agenda

* |Introduction

e Background

« Research Challenges
 Methodologies

« Performance Evaluation
« Evaluation Platforms and Software Libraries

+ Scaling Results

Conclusion

YScaleSolutionse~ superCheck2022 35

Conclusion

®* For bandwidth-bound checkpointing functions (e.g. torch.save() for relatively small DNNs), root
checkpointing is not scalable

®* Multi-level checkpointing schemes can reduce dependence on the parallel filesystem

®* HPC checkpointing tools such as SCR-Exa can be integrated with DL frameworks via Python
bindings

®* Neither root checkpointing nor SCR-Exa affect DNN convergence

-ScaleSolutions SuperCheck 2021 31

Future Work

e Apply SCR-Exa to other parallelism schemes and distributed DL frameworks

e |ntroduce detailed profiling to better understand the performance difference
between SCR-Exa and root checkpointing

X-ScaleSolutions SuperCheck 2021 32

Thank You!

g.anthony@x-scalesolutions.com

X-ScaleSolutions

http://x-scalesolutions.com/

X-ScaleSolutions

mailto:q.anthony@x-scale-solutions.com
http://x-scalesolutions.com/

