
SuperCheck 2021 1

Evaluating Multi-Level
Checkpointing for Distributed
Deep Neural Network Training

Quentin Anthony*, Donglai Dai

{q.anthony, d.dai}@x-scalesolutions.com

anthony.301@osu.edu

* This work has been done through an internship at X-ScaleSolutions while being a student at the Ohio State University

SuperCheck 2021 2

• Introduction

• Background

• Research Challenges

• Methodologies

• Performance Evaluation

• Evaluation Platforms and Software Libraries

• Scaling Results

• Conclusion

Agenda

SuperCheck 2021 3

• NVIDIA GPUs - main driving force for faster

training of Deep Neural Networks (DNNs)

• The ImageNet Challenge - (ILSVRC)

• DNNs like AlexNet, ResNet, and VGG

• 90% of the ImageNet teams used GPUs in 2014*

• And, GPUs are growing in the HPC arena as well!

– Top500 (May ‘21)

Deep Learning, CPUs, and GPUs

*https://blogs.nvidia.com/blog/2014/09/07/imagenet/

https://www.top500.org/

Accelerator/CP Family
Performance Share

https://blogs.nvidia.com/blog/2014/09/07/imagenet/
https://www.top500.org/

SuperCheck 2021 4

• Easily implement and experiment with Deep Neural Networks
• Several Deep Learning (DL) frameworks have emerged

• PyTorch, TensorFlow, and MXNet are the major DL frameworks
• Focus on PyTorch in this work

• Most frameworks are optimized for NVIDIA GPUs (for now!)

• Distributed DL frameworks built on top of DL frameworks are

gaining steam (e.g. Horovod, DeepSpeed)

Deep Learning Frameworks

SuperCheck 2021 5

• Introduction

• Background

• Research Challenges

• Methodologies

• Performance Evaluation

• Evaluation Platforms and Software Libraries

• Scaling Results

• Conclusion

Agenda

SuperCheck 2021 6

SuperCheck 2021 7

• MVAPICH2-GDR is an MPI library designed to efficiently support NVIDIA and
AMD GPUs over Mellanox InfiniBand adapters
• Based on MVAPICH2

• Support for ARM, x86, and OpenPOWER 8/9 systems

• Support for many GPU features including:
• Non-Blocking Collectives

• CUDA managed memory

• GDRCOPY and Loopback

• CUDA IPC and registration cache

• Large-message collectives for DL frameworks

• More Information: http://mvapich.cse.ohio-state.edu/userguide/gdr/

Background: MVAPICH2-GDR

http://mvapich.cse.ohio-state.edu/userguide/gdr/

SuperCheck 2021 8

• Based on LLNL Scalable Checkpoint Restart (SCR) library

• Built in collaboration with LLNL in a DOE SBIR Phase-I (currently)

Background: SCR-Exa

• Focus:

• New features on top of open-source SCR

• Some new features go to SCR

• Some new features remain in SCR-Exa

• Optimization foci:

• New applications (DL, ML, and AI)

• Cloud environments

• New systems, schedulers, etc.

Image Courtesy: https://computing.llnl.gov/projects/scalable-checkpoint-restart-for-mpi/multilevel-checkpointing-research

SuperCheck 2021 9

• Root Checkpoints/Restarts

• In standard distributed DL applications the root rank saves a

checkpoint to the parallel file system (See top figure)

• For restarts, the root rank loads a checkpoint and MPI_Bcast’s it to

all nodes in the job

• SCR and SCR-Exa Checkpoints

• Checkpoints are saved to node-local storage (NLS)

• Every Nth checkpoint is “flushed” to the parallel file system

• Two redundancy schemes are used in this work:
• Single: Every rank saves the checkpoint to its own NLS only

• Partner: Every rank saves the checkpoint to its own NLS and the neighboring node’s

NLS

• SCR and SCR-Exa Restarts

• Cached checkpoints within a job are used (bypassing the parallel file

system)

Background: SCR-Exa

Saving SCR(-Exa) ckpt to NLS

Saving root ckpt on last training step of epoch

SuperCheck 2021 10

Background: SCR-Exa (cont’d)

• SCR and SCR-Exa support hot and cold restarts

• A cold restart uses a checkpointing cache within the same allocation

• A hot restart replaces faulty nodes within the allocation with idle spare nodes (see below)

Job state before node failure Node failure Recovery from node failure

SuperCheck 2021 11

Background: SCR-Exa for DL Applications
• Periodically saving a snapshot of a DL model’s parameters during training can save work in the event of

interruptions

• DL training on a single machine often requires weeks or months to complete

• DL training at scale on HPC systems is more susceptible to hardware or software failures

• Single-machine DL training jobs can simply load/store the DL model every N epochs

• What about distributed training jobs? DL frameworks recommend the following naïve scheme:

• However, this scheme requires all ranks to block on rank 0 while it writes to the PFS every

checkpoint_freq epochs!

• What if we add support for distributed multi-level checkpointing via SCR-Exa’s Python API?

0. for n in num_epochs:

1. if rank == 0 and n % checkpoint_freq == 0:

2. save_DNN()

3. MPI_Barrier()

4. …

5. if rank == 0 and interruption:

6. load_DNN()

7. MPI_Bcast(DNN_params)

SuperCheck 2021 12

Background: Horovod

• Horovod is a distributed DNN training framework that employs data parallelism

• Acts as middleware between DL framework (Tensorflow, Pytorch, etc) and communication backend (MPI, NCCL, etc)

• Performance is strongly dependent on Allreduce

• Before carrying out evaluations, we have added full checkpointing support to EDSR and ResNet-50 training
with Horovod and SCR-Exa

SuperCheck 2021 13

• Horovod standardizes data-parallel

training

• SCR-Exa can be used directly from

the application layer

Full Program Stack

SuperCheck 2021 14

• Introduction

• Background

• Research Challenges

• Methodologies

• Performance Evaluation

• Evaluation Platforms and Software Libraries

• Scaling Results

• Conclusion

Agenda

SuperCheck 2021 15

Can we reduce the DNN checkpoint overhead

by adding support for multi-level checkpointing

into the distributed DL framework?

Problem Statement

SuperCheck 2021 16

• Introduction

• Background

• Research Challenges

• Methodologies

• Performance Evaluation

• Evaluation Platforms and Software Libraries

• Scaling Results

• Conclusion

Agenda

SuperCheck 2021 17

Adding SCR-Exa support to Horovod (Similar for torch.dist)
def save_checkpoint(epoch):

if scr.need_checkpoint():

...

All processes tell SCR-Exa a new checkpoint is about to start

scr.start_output(name, scr.FLAG_CHECKPOINT)

...

Get the full path and file name SCR-Exa will need to access the checkpoint file

newfname = scr.route_file(fname)

...

Save DNN

torch.save(ddp_model.state_dict(), newfname)

...

All processes tell SCR-Exa the checkpoint is over

scr.complete_output(valid)

def restart(epoch):

while True:

Is there a checkpoint available?

if not scr.have_restart()

break

All processes tell SCR-Exa that a new restart is about to start

name = scr.start_restart()

...

Get the full path and file name SCR-Exa will need to access the checkpoint file

newfname = scr.route_file(fname)

...

Load DNN

torch.load(newfname, map_location=map_location)

...

All processes tell SCR-Exa the restart is over

scr.complete_restart(valid):

• SCR-Exa was directly applied to the

Horovod training script

• In addition to the basic SCR-Exa code, a

full SCR-Exa configuration needs to be

defined

• Options such as asynchronous flush and the

redundancy scheme are set here

• Our runs use the following config

options:

• SCR_FLUSH_ASYNC=1

• SCR_COPY_TYPE=SINGLE

• SCR_FLUSH=10

SuperCheck 2021 18

• Introduction

• Background

• Research Challenges

• Methodologies

• Performance Evaluation

• Evaluation Platforms and Software Libraries

• Scaling Results

• Conclusion

Agenda

SuperCheck 2021 19

• Lassen Supercomputer at Lawrence Livermore National Laboratory

• #17 on TOP500.org

• 792 GPU Nodes

• Two IBM POWER 9 processors

• 4 NVIDIA Volta GPUs (16 GB HBM2)

• NVIDIA NVLINK (GPU-GPU and CPU-GPU)

• 256 GB CPU Memory/Node

• Mellanox InfiniBand, EDR (12.5 GB/s)

Evaluation Platform

SuperCheck 2021 20

Evaluation Platform

Courtesy: Performance Evaluation of MPI Libraries on GPU-enabled OpenPOWER Architectures: Early

Experiences, IWOPH ‘19

SuperCheck 2021 21

• Deep Learning Frameworks

• PyTorch v1.9.0

• CUDA 10.2

• cuDNN 7.6.5

• Horovod Distributed Training middleware (0.22.1)

• MPI Library: MVAPICH2-GDR 2.3.6

• DL Models: EDSR from publicly-available github

• https://github.com/sanghyun-son/EDSR-PyTorch

Software Libraries

https://github.com/sanghyun-son/EDSR-PyTorch

SuperCheck 2021 22

• Introduction

• Background

• Research Challenges

• Methodologies

• Performance Evaluation

• Evaluation Platforms and Software Libraries

• Scaling Results

• Conclusion

Agenda

SuperCheck 2021 23

Performance Improvement: Save Ckpt

• We take the end-to-end training time of 100 epochs of ResNet-50 training with two distributed DL frameworks

• PyTorch’s distributed module

• Horovod

• Compared root ckpt method with SCR-Exa performance, with 1 ckpt per epoch

ResNet-50 PyTorch distributed module training time ResNet-50 Horovod training time

SuperCheck 2021 24

Performance Improvement: Save Ckpt (Cont’d)

• Every 10th ckpt is flushed to the PFS with SCR-Exa

• Benefits are clearer when looking at % overhead

• SCR-Exa overhead remains below ~20%

• Root checkpointing overhead increases linearly

with GPU count

• SCR-Exa introduces additional overhead below 4

GPUs (1 node)

ResNet-50 Horovod ckpt overhead

ResNet-50 PyTorch distributed module ckpt overhead

SuperCheck 2021 25

Performance Improvement: Save Ckpt (cont’d)

• We take the end-to-end training time of 100 epochs of EDSR training with only Horovod

• Again compared root ckpt method with SCR-Exa performance, with 1 ckpt per epoch

• Similar trends as ResNet-50

EDSR Horovod training time EDSR Horovod overhead

SuperCheck 2021 26

Performance Improvement: Load Ckpt

• Now test ckpt load performance with cold restarts

• Restart training within the allocation every 10 epochs

Small-scale EDSR Horovod training time Large-scale EDSR Horovod training time

SuperCheck 2021 27

Performance Improvement: Load Ckpt (cont’d)

• SCR-Exa significantly outperforms root restarts for cold checkpoints

• Performance improvement is due to restart caching

EDSR Horovod restart overhead

SuperCheck 2021 28

Performance Improvement: Training Logs

• We want to ensure checkpoints are saved/loaded without affecting the DNN

• Take training accuracy logs with/without checkpointing with SCR-Exa

• Double-check with deterministic PyTorch and dependencies (i.e. cuDNN and NumPy)

ResNet-50 training logs with ckpt restart ResNet-50 training logs with deterministic ckpt restart

SuperCheck 2021 29

Performance Improvement: Training Logs

• To demonstrate SCR-Exa’s hot restart capability, we simulated a node error every 10 epochs

• We ran with 8 nodes for root checkpointing, and 12 nodes for SCR-Exa (4 spare nodes)

ResNet-50 training logs with deterministic ckpt restart

• We expect SCR-Exa to withstand

4 training failures before job

failure

• We expect root checkpointing

job to fail after the first error

SuperCheck 2021 30

• Introduction

• Background

• Research Challenges

• Methodologies

• Performance Evaluation

• Evaluation Platforms and Software Libraries

• Scaling Results

• Conclusion

Agenda

SuperCheck 2021 31

Conclusion

• For bandwidth-bound checkpointing functions (e.g. torch.save() for relatively small DNNs), root
checkpointing is not scalable

• Multi-level checkpointing schemes can reduce dependence on the parallel filesystem

• HPC checkpointing tools such as SCR-Exa can be integrated with DL frameworks via Python
bindings

• Neither root checkpointing nor SCR-Exa affect DNN convergence

SuperCheck 2021 32

• Apply SCR-Exa to other parallelism schemes and distributed DL frameworks

• Introduce detailed profiling to better understand the performance difference

between SCR-Exa and root checkpointing

Future Work

SuperCheck 2021 33

Thank You!
q.anthony@x-scalesolutions.com

http://x-scalesolutions.com/

mailto:q.anthony@x-scale-solutions.com
http://x-scalesolutions.com/

