

Evaluating Multi-Level Checkpointing for Distributed Deep Neural Network Training

<u>Quentin Anthony*</u>, Donglai Dai {<u>q.anthony</u>, d.dai}@x-scalesolutions.com <u>anthony.301@osu.edu</u>

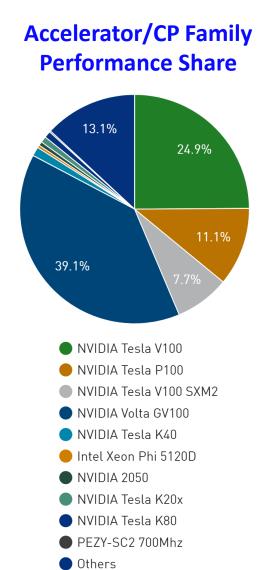
* This work has been done through an internship at X-ScaleSolutions while being a student at the Ohio State University

- Introduction
- Background
- Research Challenges
- Methodologies
- Performance Evaluation
 - Evaluation Platforms and Software Libraries
 - Scaling Results
- Conclusion

Deep Learning, CPUs, and GPUs

• NVIDIA GPUs - main driving force for faster training of Deep Neural Networks (DNNs)

- The ImageNet Challenge (ILSVRC)
 - DNNs like AlexNet, ResNet, and VGG
 - 90% of the ImageNet teams used GPUs in 2014*
 - And, GPUs are growing in the HPC arena as well!
 - Top500 (May '21)



https://www.top500.org/

*https://blogs.nvidia.com/blog/2014/09/07/imagenet/

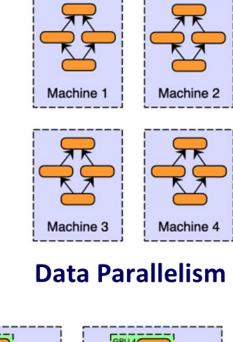
Deep Learning Frameworks

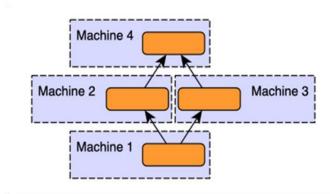
- Easily implement and experiment with Deep Neural Networks
 - Several Deep Learning (DL) frameworks have emerged
- PyTorch, TensorFlow, and MXNet are the major DL frameworks
 - Focus on **<u>PyTorch</u>** in this work
- Most frameworks are optimized for NVIDIA GPUs (for now!)
- Distributed DL frameworks built on top of DL frameworks are gaining steam (e.g. Horovod, DeepSpeed)

- Introduction
- Background
- Research Challenges
- Methodologies
- Performance Evaluation
 - Evaluation Platforms and Software Libraries
 - Scaling Results
- Conclusion

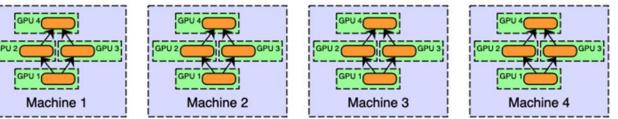
Background: Distributed DNN Training

- Deep Neural Network training consists of two phases
 - Forward pass
 - Backward pass
- Training is a compute intensive task
 - Large datasets
 - Complex Deep Learning Models
 - MPI-driven training is on the rise
- Three approaches to Distribute DNN training
 - Data Parallelism (focus of this paper)
 - Model Parallelism
 - Hybrid Parallelism





Model Parallelism



Hybrid Parallelism

Courtesy: https://blog.skymind.ai/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks/

X-ScaleSolutions

Background: MVAPICH2-GDR

- MVAPICH2-GDR is an MPI library designed to efficiently support NVIDIA and AMD GPUs over Mellanox InfiniBand adapters
 - Based on MVAPICH2
 - Support for ARM, x86, and **OpenPOWER** 8/9 systems
- Support for many GPU features including:
 - Non-Blocking Collectives
 - CUDA managed memory
 - GDRCOPY and Loopback
 - CUDA IPC and registration cache
 - Large-message collectives for DL frameworks
- More Information: <u>http://mvapich.cse.ohio-state.edu/userguide/gdr/</u>

Background: SCR-Exa

- Based on LLNL Scalable Checkpoint Restart (SCR) library
- Built in collaboration with LLNL in a DOE SBIR Phase-I (currently)
- Focus:
 - New features on top of open-source SCR
 - Some new features go to SCR
 - Some new features remain in SCR-Exa
 - Optimization foci:
 - New applications (DL, ML, and AI)
 - Cloud environments
 - New systems, schedulers, etc.

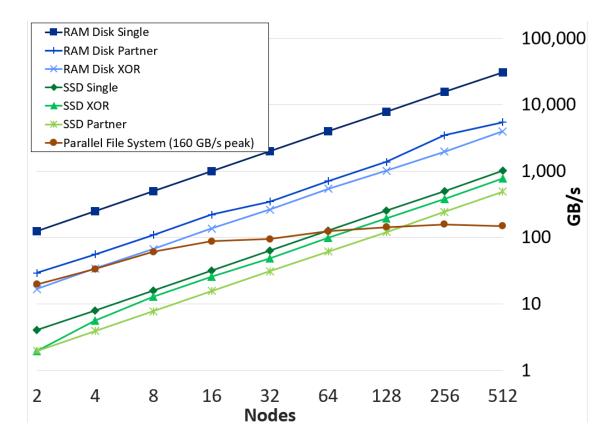
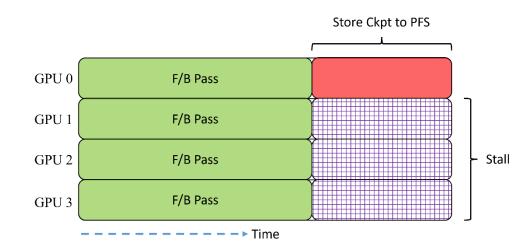


Image Courtesy: https://computing.llnl.gov/projects/scalable-checkpoint-restart-for-mpi/multilevel-checkpointing-research

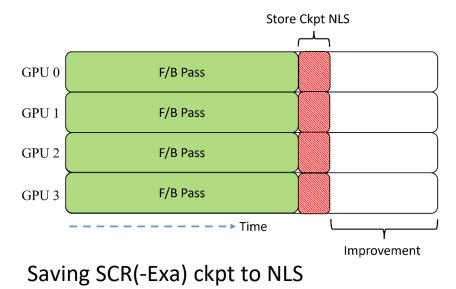
X-ScaleSolutions

Background: SCR-Exa

- Root Checkpoints/Restarts
 - In standard distributed DL applications the root rank saves a checkpoint to the parallel file system (See top figure)
 - For restarts, the root rank loads a checkpoint and MPI_Bcast's it to all nodes in the job
- SCR and SCR-Exa Checkpoints
 - Checkpoints are saved to node-local storage (NLS)
 - Every Nth checkpoint is "flushed" to the parallel file system
 - Two redundancy schemes are used in this work:
 - Single: Every rank saves the checkpoint to its own NLS only
 - Partner: Every rank saves the checkpoint to its own NLS and the neighboring node's NLS
- SCR and SCR-Exa Restarts
 - Cached checkpoints within a job are used (bypassing the parallel file system)



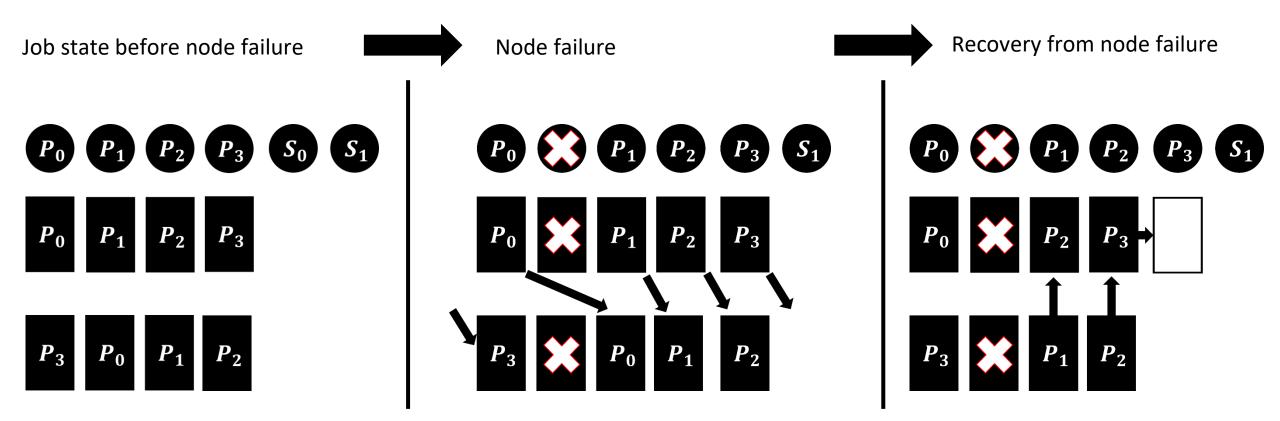
Saving root ckpt on last training step of epoch



X-ScaleSolutions

Background: SCR-Exa (cont'd)

- SCR and SCR-Exa support **hot** and **cold** restarts
 - A **cold** restart uses a checkpointing cache within the same allocation
 - A **hot** restart replaces faulty nodes within the allocation with idle spare nodes (**see below**)



X-ScaleSolutions

Background: SCR-Exa for DL Applications

- Periodically saving a snapshot of a DL model's parameters during training can save work in the event of interruptions
 - DL training on a single machine often requires weeks or months to complete
 - DL training at scale on HPC systems is more susceptible to hardware or software failures
- Single-machine DL training jobs can simply load/store the DL model every N epochs
- What about distributed training jobs? DL frameworks recommend the following naïve scheme:
 - 0. for n in num_epochs:
 1. if rank == 0 and n % checkpoint_freq == 0:
 2. save_DNN()
 3. MPI_Barrier()
 4. ...
 5. if rank == 0 and interruption:
 6. load_DNN()
 - 7. MPI_Bcast(DNN_params)
- However, this scheme requires all ranks to block on rank 0 while it writes to the PFS every checkpoint_freq epochs!
- What if we add support for distributed multi-level checkpointing via SCR-Exa's Python API?

Background: Horovod

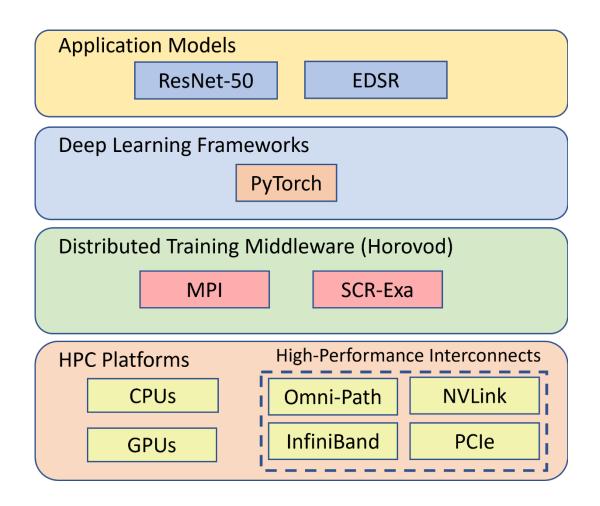
- Horovod is a distributed DNN training framework that employs data parallelism
 - Acts as middleware between DL framework (Tensorflow, Pytorch, etc) and communication backend (MPI, NCCL, etc)
 - Performance is strongly dependent on Allreduce

 Before carrying out evaluations, we have added full checkpointing support to EDSR and ResNet-50 training with Horovod and SCR-Exa

Full Program Stack

 Horovod standardizes data-parallel training

• SCR-Exa can be used directly from the application layer



- Introduction
- Background
- Research Challenges
- Methodologies
- Performance Evaluation
 - Evaluation Platforms and Software Libraries
 - Scaling Results
- Conclusion

Can we reduce the DNN checkpoint overhead by adding support for multi-level checkpointing into the distributed DL framework?

- Introduction
- Background
- Research Challenges
- Methodologies
- Performance Evaluation
 - Evaluation Platforms and Software Libraries
 - Scaling Results
- Conclusion

Adding SCR-Exa support to Horovod (Similar for torch.dist)

- SCR-Exa was directly applied to the Horovod training script
- In addition to the basic SCR-Exa code, a full SCR-Exa configuration needs to be defined
 - Options such as asynchronous flush and the redundancy scheme are set here
- Our runs use the following config options:
 - SCR_FLUSH_ASYNC=1
 - SCR_COPY_TYPE=SINGLE
 - SCR_FLUSH=10

def save_checkpoint(epoch):
 if scr.need checkpoint():

All processes tell SCR-Exa a new checkpoint is about to start scr.start_output(name, scr.FLAG_CHECKPOINT)

Get the full path and file name SCR-Exa will need to access the checkpoint file newfname = scr.route_file(fname)

Save DNN

. . .

. . .

torch.save(ddp_model.state_dict(), newfname)

All processes tell SCR-Exa the checkpoint is over scr.complete_output(valid)

def restart(epoch): while True: # Is there a checkpoint available? if not scr.have restart() break # All processes tell SCR-Exa that a new restart is about to start name = scr.start restart() . . . # Get the full path and file name SCR-Exa will need to access the checkpoint file newfname = scr.route file(fname) . . . # Load DNN torch.load(newfname, map location=map location) . . # All processes tell SCR-Exa the restart is over scr.complete restart(valid):

X-ScaleSolutions

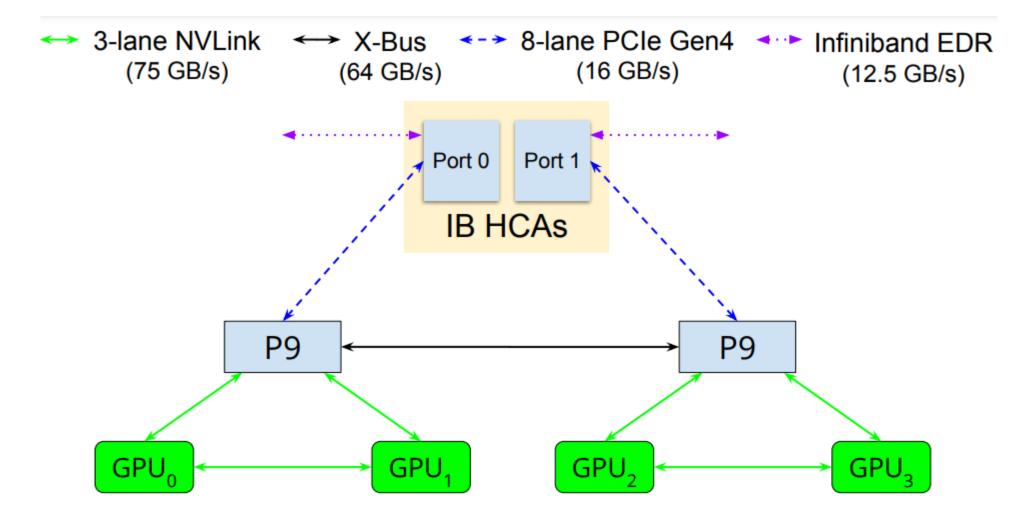
- Introduction
- Background
- Research Challenges
- Methodologies
- Performance Evaluation
 - Evaluation Platforms and Software Libraries
 - Scaling Results
- Conclusion

Evaluation Platform

- Lassen Supercomputer at Lawrence Livermore National Laboratory
 - #17 on TOP500.org
 - 792 GPU Nodes
 - Two IBM POWER 9 processors
 - 4 NVIDIA Volta GPUs (16 GB HBM2)
 - NVIDIA NVLINK (GPU-GPU and CPU-GPU)
 - 256 GB CPU Memory/Node
 - Mellanox InfiniBand, EDR (12.5 GB/s)

Evaluation Platform

X-ScaleSolutions



Courtesy: Performance Evaluation of MPI Libraries on GPU-enabled OpenPOWER Architectures: Early Experiences, IWOPH '19

Software Libraries

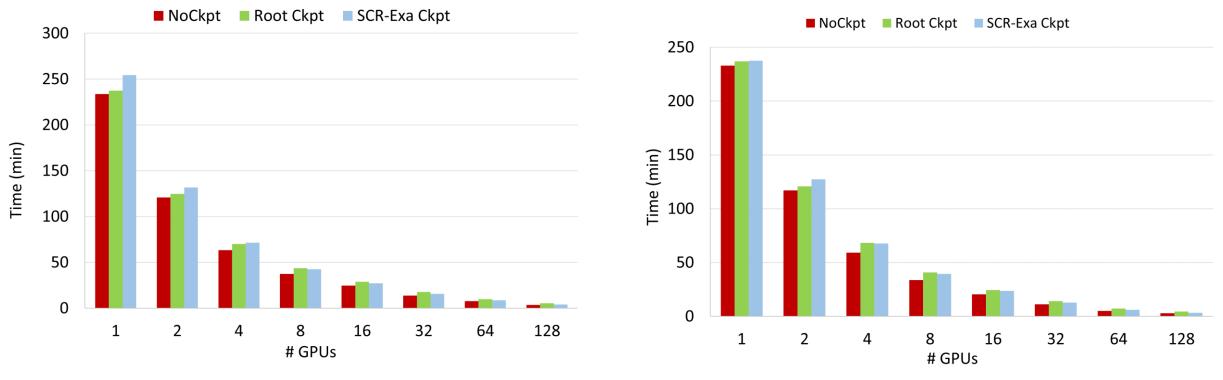
- Deep Learning Frameworks
 - PyTorch v1.9.0
- CUDA 10.2
- cuDNN 7.6.5
- Horovod Distributed Training middleware (0.22.1)
- MPI Library: MVAPICH2-GDR 2.3.6
- DL Models: EDSR from publicly-available github
 - <u>https://github.com/sanghyun-son/EDSR-PyTorch</u>

- Introduction
- Background
- Research Challenges
- Methodologies
- Performance Evaluation
 - Evaluation Platforms and Software Libraries
 - Scaling Results
- Conclusion

Performance Improvement: Save Ckpt

- We take the end-to-end training time of 100 epochs of ResNet-50 training with two distributed DL frameworks
 - PyTorch's distributed module
 - Horovod

• Compared root ckpt method with SCR-Exa performance, with 1 ckpt per epoch



ResNet-50 PyTorch distributed module training time

ResNet-50 Horovod training time

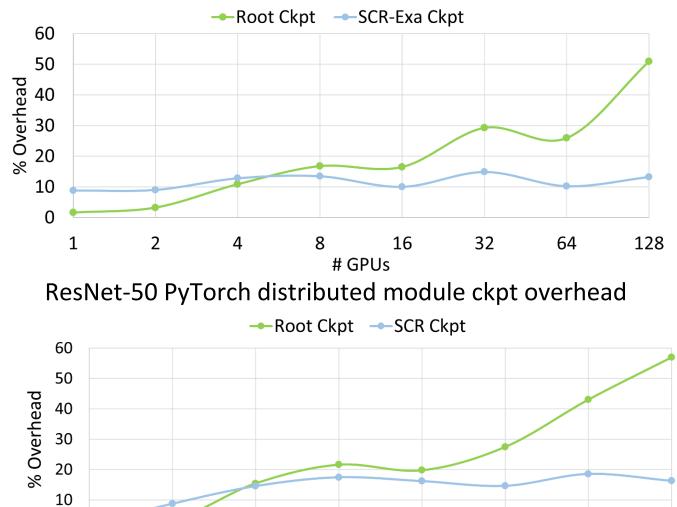
X-ScaleSolutions

Performance Improvement: Save Ckpt (Cont'd)

- Every 10th ckpt is flushed to the PFS with SCR-Exa
- Benefits are clearer when looking at % overhead
- SCR-Exa overhead remains below ~20%

X-ScaleSolutions

- Root checkpointing overhead increases linearly with GPU count
- SCR-Exa introduces additional overhead below 4 GPUs (1 node)



8

GPUs

SuperCheck 2021

2

4

ResNet-50 Horovod ckpt overhead

0

1

16

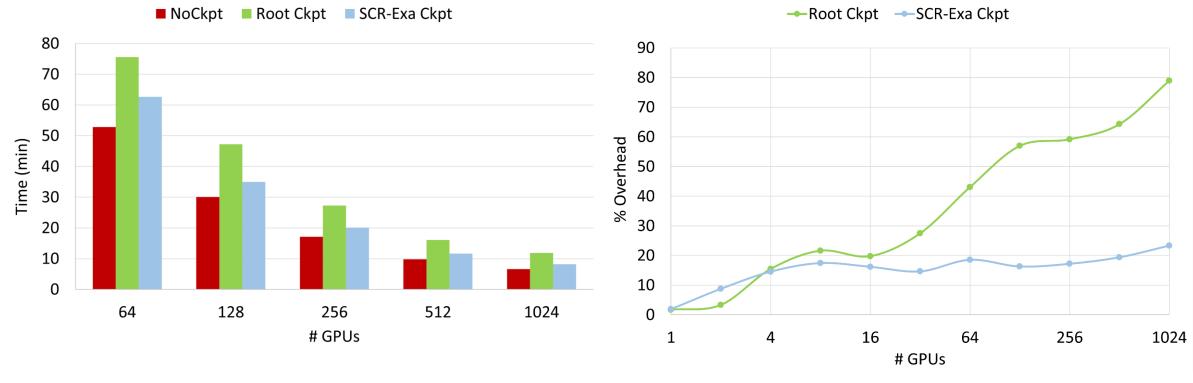
32

64

128

Performance Improvement: Save Ckpt (cont'd)

- We take the end-to-end training time of 100 epochs of EDSR training with only Horovod
- Again compared root ckpt method with SCR-Exa performance, with 1 ckpt per epoch
- Similar trends as ResNet-50

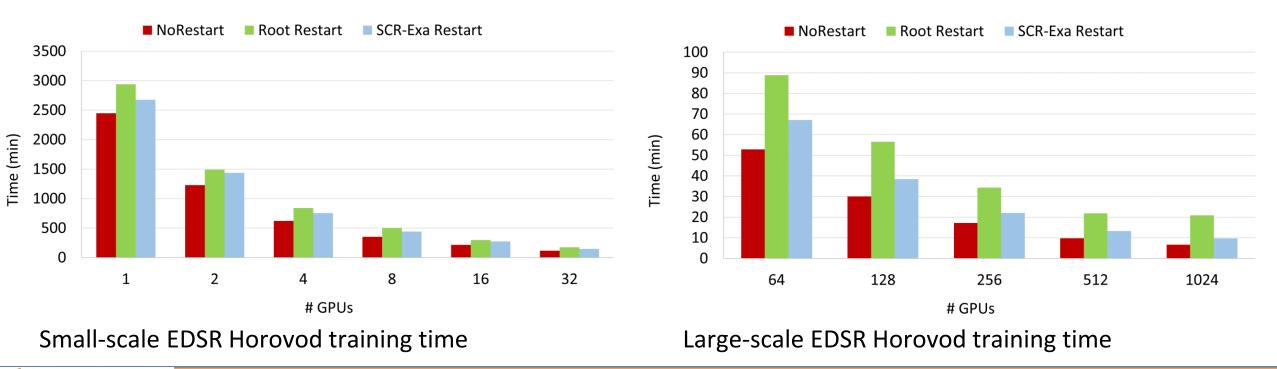


EDSR Horovod training time

EDSR Horovod overhead

Performance Improvement: Load Ckpt

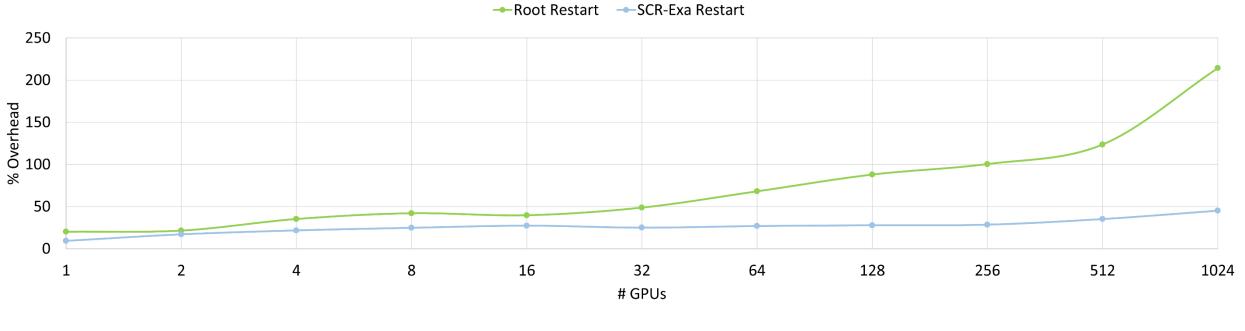
- Now test ckpt load performance with cold restarts
 - Restart training within the allocation every 10 epochs



X-ScaleSolutions

Performance Improvement: Load Ckpt (cont'd)

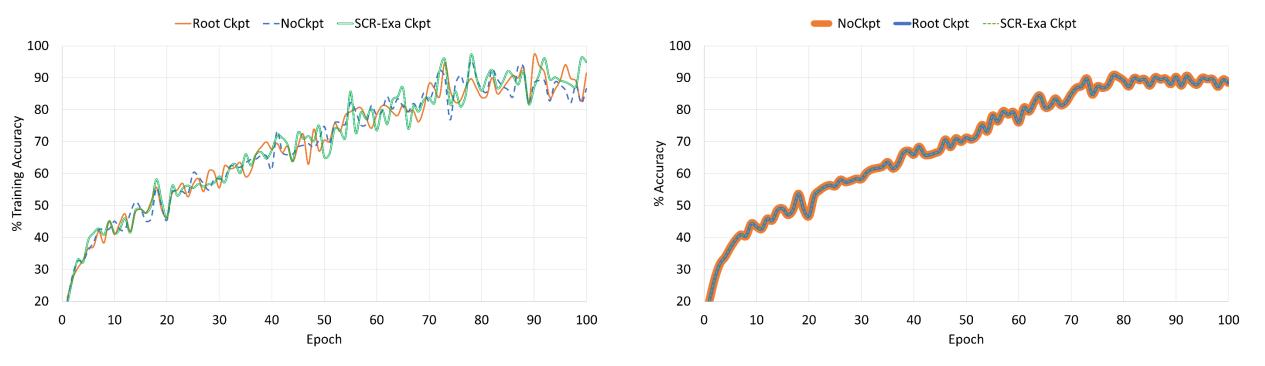
- SCR-Exa significantly outperforms root restarts for cold checkpoints
 - Performance improvement is due to restart caching



EDSR Horovod restart overhead

Performance Improvement: Training Logs

- We want to ensure checkpoints are saved/loaded without affecting the DNN
- Take training accuracy logs with/without checkpointing with SCR-Exa
- Double-check with deterministic PyTorch and dependencies (i.e. cuDNN and NumPy)

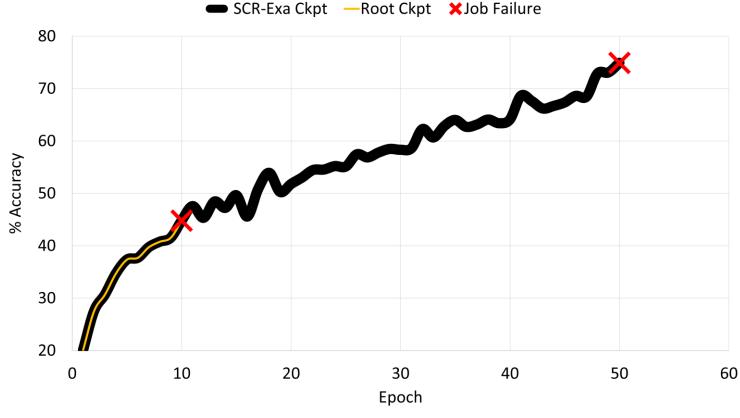


ResNet-50 training logs with ckpt restart

ResNet-50 training logs with deterministic ckpt restart

Performance Improvement: Training Logs

- To demonstrate SCR-Exa's hot restart capability, we simulated a node error every 10 epochs
- We ran with 8 nodes for root checkpointing, and 12 nodes for SCR-Exa (4 spare nodes)
- We expect SCR-Exa to withstand 4 training failures before job failure
- We expect root checkpointing job to fail after the first error



ResNet-50 training logs with deterministic ckpt restart

- Introduction
- Background
- Research Challenges
- Methodologies
- Performance Evaluation
 - Evaluation Platforms and Software Libraries
 - Scaling Results
- Conclusion

Conclusion

• For bandwidth-bound checkpointing functions (e.g. torch.save() for relatively small DNNs), root checkpointing is not scalable

• Multi-level checkpointing schemes can reduce dependence on the parallel filesystem

 HPC checkpointing tools such as SCR-Exa can be integrated with DL frameworks via Python bindings

• Neither root checkpointing nor SCR-Exa affect DNN convergence

Future Work

- Apply SCR-Exa to other parallelism schemes and distributed DL frameworks
- Introduce detailed profiling to better understand the performance difference between SCR-Exa and root checkpointing

Thank You!

g.anthony@x-scalesolutions.com

http://x-scalesolutions.com/