Evaluating Multi-Level Checkpointing for Distributed Deep Neural Network Training

Quentin Anthony*, Donglai Dai
{q.anthony, d.dai}@x-scalesolutions.com
anthony.301@osu.edu

* This work has been done through an internship at X-ScaleSolutions while being a student at the Ohio State University
Agenda

• Introduction
• Background
• Research Challenges
• Methodologies
• Performance Evaluation
 • Evaluation Platforms and Software Libraries
 • Scaling Results
• Conclusion
Deep Learning, CPUs, and GPUs

- **NVIDIA GPUs** - main driving force for faster training of Deep Neural Networks (DNNs)

- The ImageNet Challenge - (ILSVRC)
 - DNNs like AlexNet, ResNet, and VGG
 - 90% of the ImageNet teams used GPUs in 2014*
 - And, GPUs are growing in the HPC arena as well! – Top500 (May ‘21)

*https://blogs.nvidia.com/blog/2014/09/07/imagenet/
https://www.top500.org/
Deep Learning Frameworks

• Easily implement and experiment with Deep Neural Networks
 • Several Deep Learning (DL) frameworks have emerged

• PyTorch, TensorFlow, and MXNet are the major DL frameworks
 • *Focus on PyTorch in this work*

• Most frameworks are optimized for NVIDIA GPUs (for now!)

• Distributed DL frameworks built on top of DL frameworks are gaining steam (e.g. Horovod, DeepSpeed)
Agenda

- Introduction
- **Background**
- Research Challenges
- Methodologies
- Performance Evaluation
 - Evaluation Platforms and Software Libraries
 - Scaling Results
- Conclusion
Background: Distributed DNN Training

- Deep Neural Network training consists of two phases
 - Forward pass
 - Backward pass
- Training is a compute intensive task
 - Large datasets
 - Complex Deep Learning Models
 - MPI-driven training is on the rise
- Three approaches to Distribute DNN training
 - Data Parallelism (focus of this paper)
 - Model Parallelism
 - Hybrid Parallelism

Background: MVAPICH2-GDR

• MVAPICH2-GDR is an MPI library designed to efficiently support NVIDIA and AMD GPUs over Mellanox InfiniBand adapters
 • Based on MVAPICH2
 • Support for ARM, x86, and OpenPOWER 8/9 systems

• Support for many GPU features including:
 • Non-Blocking Collectives
 • CUDA managed memory
 • GDRCOPY and Loopback
 • CUDA IPC and registration cache
 • Large-message collectives for DL frameworks

• More Information: http://mvapich.cse.ohio-state.edu/userguide/gdr/
Background: SCR-Exa

- Based on LLNL Scalable Checkpoint Restart (SCR) library
- Built in collaboration with LLNL in a DOE SBIR Phase-I (currently)

- Focus:
 - New features on top of open-source SCR
 - Some new features go to SCR
 - Some new features remain in SCR-Exa
 - Optimization foci:
 - New applications (DL, ML, and AI)
 - Cloud environments
 - New systems, schedulers, etc.

Image Courtesy: https://computing.llnl.gov/projects/scalable-checkpoint-restart-for-mpi/multilevel-checkpointing-research
Background: SCR-Exa

• Root Checkpoints/Restarts
 • In standard distributed DL applications the root rank saves a checkpoint to the parallel file system (See top figure)
 • For restarts, the root rank loads a checkpoint and MPI_Bcast’s it to all nodes in the job

• SCR and SCR-Exa Checkpoints
 • Checkpoints are saved to node-local storage (NLS)
 • Every Nth checkpoint is “flushed” to the parallel file system
 • Two redundancy schemes are used in this work:
 • Single: Every rank saves the checkpoint to its own NLS only
 • Partner: Every rank saves the checkpoint to its own NLS and the neighboring node’s NLS

• SCR and SCR-Exa Restarts
 • Cached checkpoints within a job are used (bypassing the parallel file system)
Background: SCR-Exa (cont’d)

• SCR and SCR-Exa support **hot** and **cold** restarts
 • A **cold** restart uses a checkpointing cache within the same allocation
 • A **hot** restart replaces faulty nodes within the allocation with idle spare nodes (see below)
Background: SCR-Exa for DL Applications

• Periodically saving a snapshot of a DL model’s parameters during training can save work in the event of interruptions
 • DL training on a single machine often requires weeks or months to complete
 • DL training at scale on HPC systems is more susceptible to hardware or software failures
• Single-machine DL training jobs can simply load/store the DL model every N epochs
• What about distributed training jobs? DL frameworks recommend the following naïve scheme:

```python
for n in num_epochs:
    if rank == 0 and n % checkpoint_freq == 0:
        save_DNN()
        MPI_Barrier()
    ...
    if rank == 0 and interruption:
        load_DNN()
        MPI_Bcast(DNN_params)
```

• However, this scheme requires all ranks to block on rank 0 while it writes to the PFS every `checkpoint_freq` epochs!
• What if we add support for distributed multi-level checkpointing via SCR-Exa’s Python API?
Background: Horovod

• Horovod is a distributed DNN training framework that employs data parallelism
 • Acts as middleware between DL framework (Tensorflow, Pytorch, etc) and communication backend (MPI, NCCL, etc)
 • Performance is strongly dependent on Allreduce

• Before carrying out evaluations, we have added full checkpointing support to EDSR and ResNet-50 training with Horovod and SCR-Exa
Full Program Stack

• Horovod standardizes data-parallel training

• SCR-Exa can be used directly from the application layer
Agenda

• Introduction
• Background
• Research Challenges
• Methodologies
• Performance Evaluation
 • Evaluation Platforms and Software Libraries
 • Scaling Results
• Conclusion
Can we reduce the DNN checkpoint overhead by adding support for multi-level checkpointing into the distributed DL framework?
Agenda

- Introduction
- Background
- Research Challenges
- Methodologies
 - Performance Evaluation
 - Evaluation Platforms and Software Libraries
 - Scaling Results
- Conclusion
Adding SCR-Exa support to Horovod (Similar for torch.dist)

- SCR-Exa was directly applied to the Horovod training script
- In addition to the basic SCR-Exa code, a full SCR-Exa configuration needs to be defined
 - Options such as asynchronous flush and the redundancy scheme are set here
- Our runs use the following config options:
 - SCR_FLUSH_ASYNC=1
 - SCR_COPY_TYPE=SINGLE
 - SCR_FLUSH=10

```python
def save_checkpoint(epoch):
    if scr.need_checkpoint():
        ...
        # All processes tell SCR-Exa a new checkpoint is about to start
        scr.start_output(name, scr.FLAG_CHECKPOINT)
        ...
        # Get the full path and file name SCR-Exa will need to access the checkpoint file
        newfname = scr.route_file(fname)
        ...
        # Save DNN
        torch.save(ddp_model.state_dict(), newfname)
        ...
        # All processes tell SCR-Exa the checkpoint is over
        scr.complete_output(valid)

def restart(epoch):
    while True:
        # Is there a checkpoint available?
        if not scr.have_restart():
            break
        # All processes tell SCR-Exa that a new restart is about to start
        name = scr.start_restart()
        ...
        # Get the full path and file name SCR-Exa will need to access the checkpoint file
        newfname = scr.route_file(fname)
        ...
        # Load DNN
        torch.load(newfname, map_location=map_location)
        ...
        # All processes tell SCR-Exa the restart is over
        scr.complete_restart(valid):
```

• SCR-Exa was directly applied to the Horovod training script
• In addition to the basic SCR-Exa code, a full SCR-Exa configuration needs to be defined
 • Options such as asynchronous flush and the redundancy scheme are set here
• Our runs use the following config options:
 • SCR_FLUSH_ASYNC=1
 • SCR_COPY_TYPE=SINGLE
 • SCR_FLUSH=10
Agenda

• Introduction
• Background
• Research Challenges
• Methodologies
• **Performance Evaluation**
 • Evaluation Platforms and Software Libraries
 • Scaling Results
• Conclusion
Evaluation Platform

- Lassen Supercomputer at Lawrence Livermore National Laboratory
 - #17 on TOP500.org
 - 792 GPU Nodes
 - Two IBM POWER 9 processors
 - 4 NVIDIA Volta GPUs (16 GB HBM2)
 - NVIDIA NVLINK (GPU-GPU and CPU-GPU)
 - 256 GB CPU Memory/Node
 - Mellanox InfiniBand, EDR (12.5 GB/s)
Evaluation Platform

3-lane NVLink (75 GB/s) ← X-Bus (64 GB/s) ← 8-lane PCIe Gen4 (16 GB/s) ← Infiniband EDR (12.5 GB/s)

IB HCAs

P9 ← P9

GPU₀ ← GPU₁ ← GPU₂ ← GPU₃

Courtesy: Performance Evaluation of MPI Libraries on GPU-enabled OpenPOWER Architectures: Early Experiences, IWOPH ‘19
Software Libraries

• Deep Learning Frameworks
 • PyTorch v1.9.0

• CUDA 10.2

• cuDNN 7.6.5

• Horovod Distributed Training middleware (0.22.1)

• MPI Library: MVAPICH2-GDR 2.3.6

• DL Models: EDSR from publicly-available github
 • https://github.com/sanghyun-son/EDSR-PyTorch
Agenda

• Introduction
• Background
• Research Challenges
• Methodologies

• **Performance Evaluation**
 • Evaluation Platforms and Software Libraries
 • **Scaling Results**

• Conclusion
Performance Improvement: Save Ckpt

- We take the end-to-end training time of 100 epochs of ResNet-50 training with two distributed DL frameworks
 - PyTorch’s distributed module
 - Horovod

- Compared root ckpt method with SCR-Exa performance, with 1 ckpt per epoch

![Graph 1: ResNet-50 PyTorch distributed module training time](chart1)

- Y-axis: Time (min)
- X-axis: # GPUs: 1, 2, 4, 8, 16, 32, 64, 128

![Graph 2: ResNet-50 Horovod training time](chart2)

- Y-axis: Time (min)
- X-axis: # GPUs: 1, 2, 4, 8, 16, 32, 64, 128
Performance Improvement: Save Ckpt (Cont’d)

- Every 10th ckpt is flushed to the PFS with SCR-Exa
- Benefits are clearer when looking at % overhead
- SCR-Exa overhead remains below ~20%
- Root checkpointing overhead increases linearly with GPU count
- SCR-Exa introduces additional overhead below 4 GPUs (1 node)
Performance Improvement: Save Ckpt (cont’d)

- We take the end-to-end training time of 100 epochs of EDSR training with only Horovod.
- Again compared root ckpt method with SCR-Exa performance, with 1 ckpt per epoch.
- Similar trends as ResNet-50.

EDSR Horovod training time

EDSR Horovod overhead
Performance Improvement: Load Ckpt

- Now test ckpt load performance with cold restarts
 - Restart training within the allocation every 10 epochs

![Small-scale EDSR Horovod training time](image1)

![Large-scale EDSR Horovod training time](image2)
• SCR-Exa significantly outperforms root restarts for cold checkpoints
 • Performance improvement is due to **restart caching**

![Graph showing EDSR Horovod restart overhead](chart.png)
Performance Improvement: Training Logs

- We want to ensure checkpoints are saved/loaded without affecting the DNN
- Take training accuracy logs with/without checkpointing with SCR-Exa
- Double-check with deterministic PyTorch and dependencies (i.e. cuDNN and NumPy)

![ResNet-50 training logs with ckpt restart](image1.png)

![ResNet-50 training logs with deterministic ckpt restart](image2.png)
Performance Improvement: Training Logs

• To demonstrate SCR-Exa’s hot restart capability, we simulated a node error every 10 epochs
• We ran with 8 nodes for root checkpointing, and 12 nodes for SCR-Exa (4 spare nodes)
• We expect SCR-Exa to withstand 4 training failures before job failure
• We expect root checkpointing job to fail after the first error

![Graph showing ResNet-50 training logs with deterministic ckpt restart](image)
Agenda

• Introduction
• Background
• Research Challenges
• Methodologies
• Performance Evaluation
 • Evaluation Platforms and Software Libraries
 • Scaling Results
• Conclusion
Conclusion

• For bandwidth-bound checkpointing functions (e.g. `torch.save()` for relatively small DNNs), root checkpointing is not scalable

• Multi-level checkpointing schemes can reduce dependence on the parallel filesystem

• HPC checkpointing tools such as SCR-Exa can be integrated with DL frameworks via Python bindings

• Neither root checkpointing nor SCR-Exa affect DNN convergence
Future Work

- Apply SCR-Exa to other parallelism schemes and distributed DL frameworks
- Introduce detailed profiling to better understand the performance difference between SCR-Exa and root checkpointing
Thank You!

g.anthony@x-scalesolutions.com

http://x-scalesolutions.com/