

Understanding Communication Performance in HPC by using OSU INAM

Pouya Kousha

PhD student @ The Ohio State University

Advisor: Prof. DK Panda

Overview

- Profiling tool challenges
- Usage case
- Overview of OSU INAM
- Current OSU INAM features
- Demo

Profiling Tools Perspective and Broad Challenges

- There are 30+ profiling tools for HPC systems
- System level vs User level
 - User level novelty
- Different set of users have different needs
 - HPC administrators
 - HPC Software developers
 - Domain scientists
- Different HPC layers to profile
 - How to correlate them and pinpoint the problem source?

Summary of existing profiling tools and their capabilities

Tools	MPI Runtime		
	Applications	Network Fabric	Job scheduler
INAM*	\checkmark	\checkmark	\checkmark
TAU	\checkmark	\checkmark	X
HPCToolkit	\checkmark	×	X
Intel Vtune	\checkmark	X	X
IPM	\checkmark	X	X
mpiP	\checkmark	×	X
Intel ITAC	\checkmark	×	X
ARM MAP	\checkmark	×	X
HVProf	\checkmark	×	X
PCP(used by XDMOD)	X	\checkmark	\checkmark
Prometheus	X	\checkmark	\checkmark
Mellanox FabricIT	X	\checkmark	X
BoxFish	X	\checkmark	X
LDMS	X	\checkmark	X

* This design has been publicly released on 06/08/2020 and is available for free here https://mvapich.cse.ohio-state.edu/tools/osu-inam/

Profiling Tools Perspective and Broad Challenges

- Understanding the interaction between applications, MPI libraries, I/O and the communication fabric is challenging
 - Find root causes for performance degradation
 - Identify which layer is causing the possible issue
 - Understand the internal interaction and interplay of MPI library components and network level
 - Online profiling

How can we design a tool that enables holistic, real-time, scalable and in-depth understanding of communication traffic through tight integration with the MPI runtime and job scheduler?

Overview of OSU InfiniBand Network Analysis and Monitoring (INAM) Tool

- A network monitoring and analysis tool that is capable of analyzing traffic on the InfiniBand network with inputs from the MPI runtime
 - <u>http://mvapich.cse.ohio-state.edu/tools/osu-inam/</u>
- Monitors IB clusters in real time by querying various subnet management entities and gathering input from the MPI runtimes
- Capability to analyze and profile node-level, job-level and process-level activities for MPI communication
 - Point-to-Point, Collectives and RMA
- Ability to filter data based on type of counters using "drop down" list
- Remotely monitor various metrics of MPI processes at user specified granularity
- "Job Page" to display jobs in ascending/descending order of various performance metrics in conjunction with MVAPICH2-X
- Visualize the data transfer happening in a "live" or "historical" fashion for entire network, job or set of nodes
- Sub-second port query and fabric discovery in less than 10 mins for ~2,000 nodes

OSU INAM v1 released (11/10/2022)

- Support for MySQL and InfluxDB as database backends
- Support for data loading progress bars on the UI for all charts
- Enhanced database insertion using InfluxDB
- Enhanced the UI APIs by making asynchronous calls for data loading
- Support for continuous queries to improve visualization performance
- Support for SLURM multi-cluster configuration
- Significantly improved database query performance when using InfluxDB
- Support for automatic data retention policy when using InfluxDB
- Support for PBS and SLURM job scheduler as config time
- Ability to gather and display Lustre I/O for MPI jobs
- Enable emulation mode to allow users to test OSU INAM tool in a sandbox environment without actual deployment
- Generate email notifications to alert users when user defined events occur
- Support to display node-/job-level CPU, Virtual Memory, and Communication Buffer utilization information for historical jobs
- Support to handle multiple job schedulers on the same fabric
- Support to collect and visualize MPI_T based performance data
- Support for MOFED 4.5, 4.6, 4.7, and 5.0
- Support for adding user-defined labels for switches to allow better readability and usability
- Support authentication for accessing the OSU INAM webpage
- Optimized webpage rendering and database fetch/purge capabilities
- Support to view connection information at port level granularity for each switch
- Support to search switches with name and lid in historical switches page
- Support to view information about Non-MPI jobs in live node page

Flow of Using OSU INAM

OSU INAM Features

Comet@SDSC --- Clustered View

(1,879 nodes, 212 switches, 4,377 network links)

- Show network topology of large clusters
- Visualize job topology in the network
- Visualize traffic pattern on different links
- Quickly identify congested links/links in error state
- See the history unfold play back historical state of the network

OSU Booth @ SC22

Finding Routes Between Nodes

OSU INAM Features (Cont.)

Visualizing a Job (5 Nodes)

- Job level view
 - Show different network metrics (load, error, etc.) for any live job
 - Play back historical data for completed jobs to identify bottlenecks
- Node level view details per process or per node
 - CPU and memory utilization for each rank/node
 - Bytes sent/received for MPI operations (pt-to-pt, collective, RMA)
 - Network metrics (e.g. XmitDiscard, RcvError) per rank/node

Estimated Process Level Link Utilization

- Estimated Link Utilization view
 - Classify data flowing over a network link at different granularity in conjunction with MVAPICH2-X 2.2rc1
 - Job level and
 - Process level

More Details in Tutorial/Demo

Live Demo at OSC and OSU clusters