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Parallel Programming Models Overview
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Shared Memory Model Distributed Memory Model Partitioned Global Address Space (PGAS)
DSM MPI (Message Passing Interface) Global Arrays, UPC, Chapel, X10, CAF, ...

Programming models provide abstract machine models
Models can be mapped on different types of systems

— e.g. Distributed Shared Memory (DSM), MPI within a node, etc.
Additionally, OpenMP can be used to parallelize computation

within the node

Each model has strengths and drawbacks - suite different problems or

applications
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U
Partitioned Global Address Space (PGAS) Models

* Key features
- Simple shared memory abstractions
- Light weight one-sided communication

- Easier to express irregular communication

* Different approaches to PGAS

- Languages
e Unified Parallel C (UPC)
e Co-array Fortran (CAF)
« X10
 Chapel

- Libraries
* OpenSHMEM
* Global Arrays
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OpenSHMEM: PGAS library

SHMEM implementations — Cray SHMEM, SGI SHMEM, Quadrics SHMEM, HP
SHMEM, GSHMEM

Subtle differences in API, across versions — example:

SGI SHMEM Quadrics SHMEM Cray SHMEM
Initialization start_pes(0) shmem_init
Process ID _my pe my _pe

Made application codes non-portable

OpenSHMEM is an effort to address this:

“A new, open specification to consolidate the various extant SHMEM versions
into a widely accepted standard.” — OpenSHMEM Specification v1.0
by University of Houston and Oak Ridge National Lab
SGI SHMEM is the baseline
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Unified Parallel C: PGAS language

e UPC: a parallel extension to the C standard

e UPC Specifications and Standards:
— Introduction to UPC and Language Specification, 1999
— UPC Language Specifications, v1.0, Feb 2001
— UPC Language Specifications, v1.1.1, Sep 2004
— UPC Language Specifications, v1.2, June 2005
— UPC Language Specifications, v1.3, Nov 2013

e UPC Consortium
— Academic Institutions: GWU, MTU, UCB, U. Florida, U. Houston, U. Maryland...
— Government Institutions: ARSC, IDA, LBNL, SNL, US DOE...
— Commercial Institutions: HP, Cray, Intrepid Technology, IBM, ...

e Supported by several UPC compilers
— Vendor-based commercial UPC compilers: HP UPC, Cray UPC, SGI UPC
— Open-source UPC compilers: Berkeley UPC, GCC UPC, Michigan Tech MuPC

e Aims for: high performance, coding efficiency, irregular applications, ...
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Co-array Fortran (CAF): Language-level PGAS support in Fortran

e An extension to Fortran to support global shared array in
parallel Fortran applications

e CAF = CAF compiler + CAF runtime (libcaf)

e Coarray syntax and basic e Collective communication and
synchronization support in atomic operations in upcoming
Fortran 2008 Fortran 2015

interface parameters
E ,g’, CO_BROADCAST A, SOURCE_IMAGE [, STAT, ERRMSG]
CO_MAX A [, RESULT_IMAGE, STAT, ERRMSG]
real :: a(n) [*] CO_MIN A [, RESULT_IMAGE, STAT, ERRMSG]
CO_SUM A [, RESULT_IMAGE, STAT, ERRMSG]
X ( : ) [q] = X ( : ) + X ( : ) [p] CO_REDUCE A, OPERATOR [, RESULT_IMAGE,
STAT, ERRMSG]
name|[1] = name
ATOMIC ADD
sync all

ATOMIC FETCH ADD
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MPI+PGAS for Exascale Architectures and Applications

e Hierarchical architectures with multiple address spaces

(MPI + PGAS) Model

— MPI across address spaces

— PGAS within an address space
e MPIlis good at moving data between address spaces

e Within an address space, MPI can interoperate with other shared
memory programming models

e Applications can have kernels with different communication patterns

e (Can benefit from different models

e Re-writing complete applications can be a huge effort

Port critical kernels to the desired model instead
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MVAPICH2 Software

High Performance open-source MPI Library for InfiniBand, 10-40Gig/iWARP, and RDMA over
Converged Enhanced Ethernet (RoCE)

MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Available since 2002
MVAPICH2-X (MPI + PGAS), Available since 2011
Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014
Support for Virtualization (MVAPICH2-Virt), Available since 2015
Support for Energy-Awareness (MVAPICH2-EA), Available since 2015
Used by more than 2,475 organizations in 76 countries
More than 308,000 downloads from the OSU site directly
Empowering many TOP500 clusters (June ‘15 ranking)
e 10t ranked 519,640-core cluster (Stampede) at TACC

e 13t ranked 185,344-core cluster (Pleiades) at NASA

e 25% ranked 76,032-core cluster (Tsubame 2.5) at Tokyo Institute of Technology and many others
Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)

http://mvapich.cse.ohio-state.edu

Empowering Top500 systems for over a decade
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Hybrid (MPI+PGAS) Programming

e Application sub-kernels can be re-written in MPI/PGAS based
on communication characteristics

HPC Application

e Benefits:

— Best of Distributed Computing Model

— Best of Shared Memory Computing Model
e Exascale Roadmap™:

— “Hybrid Programming is a practical way to
program exascale systems”

* The International Exascale Software Roadmap, Dongarra, J., Beckman, P. et al., Volume 25, Number 1, 2011,
International Journal of High Performance Computer Applications, ISSN 1094-3420
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MVAPICH2-X for Hybrid MPI + PGAS Applications

OpenSHMEM Calls t CAF Calls t UPC Callst t MPI Calls

e Unified communication runtime for MPI, UPC, OpenSHMEM, CAF available with
MVAPICH2-X 1.9 (2012) onwards!

— http://mvapich.cse.ohio-state.edu

e Feature Highlights

— Supports MPI(+OpenMP), OpenSHMEM, UPC, CAF, MPI(+OpenMP) + OpenSHMEM,
MPI(+OpenMP) + UPC

— MPI-3 compliant, OpenSHMEM v1.0 standard compliant, UPC v1.2 standard
compliant (with initial support for UPC 1.3), CAF 2008 standard (OpenUH)

— Scalable Inter-node and intra-node communication — point-to-point and collectives
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OpenSHMEM Collective Communication: Performance

100000

Reduce (1,024 processes)

==MV2X-SHMEM

=#=0MP|-SHMEM

Time (us)

10000000
1000000
100000
10000
1000

100

10

1

Time (us)

SC15

16 64 256 1K 4K 16K 64K
Message Size

Collect (1,024 processes)

X O > o & 8 &
\,coqgo'\,v,\/bbvfﬁob

Message Size

10000

Broadcast (1,024 processes)

1000

Time (us)

[HEY
o
|

100 -
18X

Time (us)

4

16 64 256 1K 4K 16K 64K 256K
Message Size

Barrier

wifl

1024
No. of Processes

2048

11



Hybrid MPI+UPC NAS-FT

35
30
25
20 ,, M UPC(GASNet)
E 15 @ UPC (MV2-X)
) 10 = MPI+UPC (MV2-X)

B-64 C-64 B-128 C-128
NAS Problem Size — System Size

e Modified NAS FT UPC all-to-all pattern using MPI1_Alltoall
e Truly hybrid program
e For FT (Class C, 128 processes)

e 34% improvement over UPC (GASNet)

e 30% improvement over UPC (MV2-X)

J. Jose, M.. Luo, S. Sur and D. K. Panda, Unifying UPC and MPI Runtimes: Experience with MVAPICH, PGAS 2010
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CAF One-sided Communication: Performance
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Micro-benchmark improvement (MV2X vs. GASNet-IBV, UH CAF test-suite)
— Put bandwidth: 3.5X improvement on 4KB; Put latency: reduce 29% on 4B
Application performance improvement (NAS-CAF one-sided implementation)
— Reduce the execution time by 12% (SP.D.256), 18% (BT.D.256)

J. Lin, K. Hamidouche, X. Lu, M. Li and D. K. Panda, High-performance Co-array Fortran support with
MVAPICH2-X: Initial experience and evaluation, HIPS’15
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Graph500 - BFS Traversal Time

Performance Strong Scaling
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e Hybrid design performs better than MPI implementations

* 16,384 processes
- 1.5X improvement over MPI-CSR
- 13X improvement over MPI-Simple (Same communication characteristics)

e Strong Scaling
Graph500 Problem Scale = 29
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Hybrid MPI+OpenSHMEM Sort Application
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e Performance of Hybrid (MPI+OpenSHMEM) Sort Application

Execution Time (seconds)

- 1TB Input size at 8,192 cores: MPI — 164, Hybrid-SR (Simple Read) — 92.5,

Hybrid-ER (Eager Read) - 90.36
- 45% improvement over MPI-based design

* Weak Scalability (configuration: input size of 1TB per 512 cores)
- At 4,096 cores: MPI—0.25 TB/min, Hybrid-SR — 0.34 TB/min, Hybrid-SR — 0.38 TB/min

- 38% improvement over MPI based design
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Accelerating MaTEx k-NN with Hybrid MPI and OpenSHMEM

e MaTEx: MPIl-based Machine learning algorithm library
e k-NN: a popular supervised algorithm for classification
e Hybrid designs:
— Overlapped Data Flow; One-sided Data Transfer; Circular-buffer Structure

KDD-tranc (30MB) on 256 cores KDD (2.5GB) on 512 cores
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e Benchmark: KDD Cup 2010 (8,407,752 records, 2 classes, k=5)
e For truncated KDD workload on 256 cores, reduce 27.6% execution time
e For full KDD workload on 512 cores, reduce 9.0% execution time

J. Lin, K. Hamidouche, J. Zhang, X. Lu, A. Vishnu, D. Panda. Accelerating k-NN Algorithm with Hybrid MPI and OpenSHMEM,
OpenSHMEM 2015
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CUDA-Aware Concept

» Before CUDA 4: Additional copies

* Low performance and low productivity RO
* After CUDA 4: Host-based pipeline

* Unified Virtual Address

* Pipeline CUDA copies with IB transfers

* High performance and high productivity
 After CUDA 5.5: GPUDirect-RDMA support
 GPU to GPU direct transfer

InfiniBand

* Bypass the host memory

* Hybrid design to avoid PCI bottlenecks

InfiniBand



N
Limitations of OpenSHMEM for GPU Computing

e OpenSHMEM memory model does not support disjoint memory address

spaces - case with GPU clusters
Existing OpenSHMEM Model with CUDA
PEO

host_buf = shmalloc (...)
cudaMemcpy ((host Howf, cbev Hudf, .. . ))

PEO
shmem_putmem (host_buf, host_buf, size, pe)
shmem_barrier (...)
GPU-to-GPU
Data Movement PE 1
Y host_buf = shmalloc (...)
PE 1 ost_buf = shmalloc (...
shmem_barrier (...). )

cudaMemcpy (tostbbffhdev budfsize, ). . )
e Copies severely limit the performance
e Synchronization negates the benefits of one-sided communication

e Similar issues with UPC
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T ——
Global Address Space with Host and Device Memory

Host Memory Host Memory

Extended APIs:

heap_on_device/heap _on_host

hared space
on host memory

(n

a way to indicate location of heap
host_buf =shmalloc (sizeof(int), 0);
dev_buf =shmalloc (sizeof(int), 1);

{ Shared
|
|

CUDA-Aware OpenSHMEM
Same design for UPC

PEO Shared

shared spag Shared

plevice me o
\|

dev_buf = shmalloc (size, 1);

shmem_putmem (dev_buf, dev_buf, size, pe)

PE1 S. Potluri, D. Bureddy, H. Wang, H. Subramoni and D. K.

dev_buf = shmalloc (size, 1); Panda, Extending OpenSHMEM for GPU Computing,
IPDPS’13
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CUDA-aware OpenSHMEM and UPC runtimes

» After device memory becomes part of the global shared space:
- Accessible through standard UPC/OpenSHMEM communication APIs
- Data movement transparently handled by the runtime
- Preserves one-sided semantics at the application level
 Efficient designs to handle communication
- Inter-node transfers use host-staged transfers with pipelining
-Intra-node transfers use CUDA IPC

- Possibility to take advantage of GPUDirect RDMA (GDR)

e Goal: Enabling High performance one-sided communications

semantics with GPU devices
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Exploiting GDR: OpenSHMEM: Inter-node Evaluation
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Application Evaluation: GPULBM and 2DStencil

Weak Scaling M Host-Pipeline M Enhanced-GDR
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Redesign the application - Platform: Wilkes (Intel lvy Bridge + NVIDIA

* CUDA-Aware MPI : Send/Recv=> hybrid  Tesla K20c + Mellanox Connect-IB)
CUDA-Aware MPI+OpenSHMEM

* cudaMalloc =>shmalloc(size,1);

* MPI_Send/recv =>shmem_put + fence

- New designs achieve 20% and 19%
improvements on 32 and 64 GPU nodes

* 53% and 45% K. Hamidouche, A. Venkatesh, A. Awan, H. Subramoni, C.
o Degradation is due to small Ching and D. K. Panda, Exploiting GPUDirect RDMA in
Input size Designing High Performance OpenSHMEM for GPU Clusters.

|IEEE Cluster 2015
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Concluding Remarks

Presented an overview of a Hybrid MPI+PGAS models

Outlined research challenges in designing efficient runtimes for

these models on clusters with InfiniBand

Demonstrated the benefits of Hybrid MPI+PGAS models for a set

of applications on Host based systems

Presented the model extension and runtime support for
Accelerator-Aware hybrid MPI+PGAS model

Hybrid MPI+PGAS model is an emerging paradigm which can lead
to high-performance and scalable implementation of applications

on exascale computing systems using accelerators
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The MVAPICH2 Project
http://mvapich.cse.ohio-state.edu/
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