
Accelerating MPI Message Matching and Reduction Collectives For
Multi-/Many-core Architectures

M. Bayatpour, S. Chakraborty , H. Subramoni, X. Lu, and D. K. Panda

Department of Computer Science and Engineering
The Ohio State University

Adaptive and Dynamic Design for MPI Tag
Matching

M. Bayatpour, H. Subramoni, S. Chakraborty and D. K. Panda

Department of Computer Science and Engineering
The Ohio State University

Network Based Computing Laboratory 3Cluster’16

Supercomputing systems scaling rapidly

• Multi- and Many-core architectures

• High-performance Interconnects

InfiniBand and Omni-Path are popular HPC Interconnects

• Low-latency and High-bandwidth

• 192 systems (39%) in Jun’17 Top500 use IB

MPI used by vast majority of HPC applications

• Helping applications scale to thousands of cores

• Large systems exposing new scalability issues

Current Trends in HPC

Network Based Computing Laboratory 4Cluster’16

Components of an MPI Library

HPC Application

MPI Library
Blocking/Non-Blocking

Collectives
MPI-3 RMA

(Remote Memory Access)

Tag Matching

Point-to-Point

High Performance Interconnects

InfiniBand
High Speed

Ethernet
Omni-Path RoCE iWARP

Network Based Computing Laboratory 5Cluster’16

• On the receiver side, one needs to match the incoming

message with the message that was posted by receiver

• Three parameters should match

– Context id, Source Rank, Tag

– Wildcards (MPI_ANY_SRC, MPI_ANY_TAG) introduce additional complexity

• Two kinds of the queues are involved in the receiver side

– Posted queue

– Unexpected queue

MPI Tag Matching 101

Network Based Computing Laboratory 6Cluster’16

• Most MPI libraries use double linked list for unexpected and posted queues

• Message to be removed could be in any position of the queue

– Removal time in the best case is O(1) and in the average case is linear O(N)

• Tag matching is in the critical path for point-to-point based operations

• Number of the processes in a job is increasing

– Future extreme-scale systems are expected to have millions of cores*

– Multithreaded programming models

• All can push the search functions to go deeper in the lists

– Impose significant overhead on the performance

* Thakur R, Balaji P, Buntinas D, Goodell D, Gropp W, Hoefler T, Kumar S, Lusk E, Träff JL. MPI at Exascale. Proceedings of SciDAC. 2010 Jul;2:14-35.

Search Time Analysis of the Default Double Linked List Design

Network Based Computing Laboratory 7Cluster’16

• Based on the Bin-based and default simple double linked list scheme

• Three phases

– Starts with the default design

– Observes the communication pattern for each process during the runtime

– If all the conditions are held, it begins to convert the default scheme to the Bin-

based scheme

• Each process can have its own scheme

– Some may stay at the default scheme, some may need to convert to bin-based

scheme

Proposed Adaptive Design

Network Based Computing Laboratory 8Cluster’16

• For each of the posted and unexpected queues, we consider the following

thresholds

– Number of the calls to the tag matching functions in the library (CALLS_NUM)

– The average number of queue look-up attempts per CALLS_NUM

(MACTCH_ATTMPS)

• Each process maintains both during the runtime

• If both thresholds are crossed

– Adaptive design changes from the double linked list scheme to the bin-based scheme

Proposed Adaptive Design (Cont’d)

Network Based Computing Laboratory 9Cluster’16

• Currently, conversion is one way from default to bin-based scheme

and may occur only one time through the entire runtime

• These thresholds are fixed through entire runtime and they are

configurable

– We have tuned them based on empirical analysis using OSU micro benchmarks

• We consider two possible sizes for NUM_BINS

– ¼ JOB_SIZE and ½ JOB_SIZE

– Based on MATCH_ATTMPS, we decide which one to choose

Proposed Adaptive Design (Cont’d)

Network Based Computing Laboratory 10Cluster’16

Summary of Tag Matching Performance

• Comparison of different designs/benchmarks at 512 processes on RI

• Adaptive design shows the best performance

Network Based Computing Laboratory 11Cluster’16

Summary of Memory Consumed for Tag Matching

• Comparison of different designs/ benchmarks at 512 processes on RI with

default design

• Adaptive design shows minimal memory overhead

Scalable Reduction Collectives with Data Partitioning-
based Multi-Leader Design

M. Bayatpour, S. Chakraborty , H. Subramoni, X. Lu, and D. K. Panda

Department of Computer Science and Engineering
The Ohio State University

Network Based Computing Laboratory 13Cluster’16

• Convenient abstraction to implement group communication

operations

• Widely used across various scientific domains

– Owing to their ease of use and performance portability

• One of the most popular collective operations: MPI_Allreduce

– 37% of communication time

• MPI_Allreduce reduces values from all processes and distribute

the result back to all processes

MPI Reduction Collectives 101

Network Based Computing Laboratory 14Cluster’16

• Tree-based strategies

– Recursive Doubling

• Based on point-to-point operation

• High parallelism for computation

– All the process are involved in computation

• Pairs distance doubles after each step

• Log (P*) steps

• Hierarchical strategy

– A two-level approach

• Intra-node reduction by root + inter-node Allreduce

• Computations are done by the root process of each node

Existing Designs for MPI_Allreduce

* Bloch et al. Scalable Hierarchical Aggregation Protocol (SHArP): A Hardware Architecture for Efficient Data Reduction

• Network offload based mechanism

– Scalable Hierarchical Aggregation Protocol (SHArP*) by Mellanox

•Management and execution of MPI operations in the network

by using SHArP

•Similar to hierarchical strategy

– QPI transfer to send everything to same socket

mailto:panda@cse.ohio-state.edu

Network Based Computing Laboratory 15Cluster’16

• Using OSU Micro benchmark suite*

• “Multiple Bandwidth Test”

– Back-to-back messages

• Sent to a pair before waiting for receive

• Evaluates the aggregate unidirectional bandwidth between

multiple pairs of processes

• 1) Xeon + IB, 2)Xeon + Omni-Path, and 3) KNL + Omni-Path

Relative Throughput of Different Architectures

* http://mvapich.cse.ohio-state.edu/benchmarks/

Network Based Computing Laboratory 16Cluster’16

0

2

4

6

8

10

12

14

16

18

1 4 16 64 256 1K 4K 16K 64K 256K 1M

R
el

at
iv

e
Th

ro
u

gh
p

u
t

Message Size (Byte)

Shared Memory (KNL)

2-pair 4-pair 8-pair 16-pair

Communication Characteristics of Modern Architectures:
Intra-node Communication

• Support many concurrent intra-node

communication

• The relative throughput very close to

the number of pairs

Multiple pair test vs. one pair test

H
ig

h
er

 is
 b

et
te

r

Network Based Computing Laboratory 17Cluster’16

0

2

4

6

8

10

12

14

16

18

20

1 4 16 64 256 1K 4K 16K 64K 256K 1M

R
el

at
iv

e
Th

ro
u

gh
p

u
t

Message Size (Byte)

Xeon (Haswell) + IB (EDR - 100Gbps)

2-pair 4-pair 8-pair 16-pair

Communication Characteristics of Modern Architectures:
InfiniBand Interconnect

• The relative throughput close to

the number of communicating

processes per node

• Support many concurrent intra-

node communication

Multiple pair test vs. one pair test

H
ig

h
er

 is
 b

et
te

r

Network Based Computing Laboratory 18Cluster’16

0

2

4

6

8

10

12

14

16

18

1 4 16 64 256 1K 4K 16K 64K 256K 1M

R
el

at
iv

e
Th

ro
u

gh
p

u
t

Message Size (Byte)

KNL + Omni-Path (100 Gbps)

2-pair 4-pair 8-pair 16-pair

Communication Characteristics of Modern Architectures:
Omni-Path Interconnect

• The relative throughput of one for

large messages

• Supports many concurrent

communications for small and

medium message range

• Similar behavior observed for Xeon +

Omni-Path

Multiple pair test vs. one pair test

H
ig

h
er

 is
 b

et
te

r

Network Based Computing Laboratory 19Cluster’16

Performance limitations of Existing Designs for MPI_Allreduce

• Does not take advantage of large number of cores and high concurrency in

communication

• Does not take advantage of shared memory collectives

• Needs kernel support for zero-copy communication for large messages

in same node

• Too many inter-node communication for large PPNs

• Limited performance due to extra QPI transfers

• Limited computing power of switches limits its performance for medium

and large message ranges

Network Based Computing Laboratory 20Cluster’16

Design Outline

Network Based Computing Laboratory 21Cluster’16

DPML Design Phases

… DL DL … DL

D1

D2

…

DL

…

D1

D2

…

DL

D1

D2

…

DL

Process 1 Process 2 Process N

D1 D1 … D1 D2 D2 … D2

• Phase 1: Copy to shared

Memory

Local Memory

Shared

Memory

Node 0

Network Based Computing Laboratory 22Cluster’16

DPML Design Phases

• Phase 1: Copy to shared

Memory

• Phase 2: Parallel Intra-

node reduction by the

leaders

…D1 D1 … D1 D2 D2 … D2 DL DL … DL

R’
1

… R’
2

… … R’L …Shared

Memory

Network Based Computing Laboratory 23Cluster’16

DPML Design Phases

• Phase 1: Copy to shared

Memory

• Phase 2: Parallel Intra-

node reduction by the

leaders

…R’1 … R’2 … R’L …Node h

…R’1 … R’2 … R’L …Node 1

…R’1 … R’2 … R’L …Node 2

…R’1 … R’2 … R’L …Node 3

Network Based Computing Laboratory 24Cluster’16

DPML Design Phases

• Phase 1: Copy to shared

Memory

• Phase 2: Parallel Intra-

node reduction by the

leaders
• Phase 3: Parallel Inter-

node Allreduce by the

leaders with same index
…R1 … R2 … RL …Node h

…R1 … R2 … RL …Node 1

…R1 … R2 … RL …Node 2

…R1 … R2 … RL …Node 3

Network Based Computing Laboratory 25Cluster’16

DPML Design Phases

• Phase 1: Copy to shared

Memory

• Phase 2: Parallel Intra-

node reduction by the

leaders
• Phase 3: Parallel Inter-

node Allreduce by the

leaders with same index

…R1 … R2 … Rl …

R1

R2

…

Rl

R1

R2

…

Rl

R1

R2

…

Rl

R1

R2

…

Rl

…

Process 1 Process 2 Process 3 Process
N

Shared

Memory

Local Memory

Node 0

• Phase 4: Parallel

distribution of Allreduce

results to local buffers

Network Based Computing Laboratory 26Cluster’16

0

200

400

600

800

1000

1200

1400

8K 16K 32K 64K 128K 256K

Message Size
MVAPICH2 DPML IMPI

Performance of MPI_Allreduce On Omni-Path

KNL + Omni-Path (32 Nodes, 32 PPN)

0

200

400

600

800

1000

1200

1400

1600

1800

8K 16K 32K 64K 128K 256K

Message Size
MVAPICH2 DPML IMPI

4 X

• DPML always outperform MVAPICH2 for all medium and large message range

• DPML outperform IMPI in medium message range

• High parallelism of DPML benefits KNL more than XEON
*Processes Per Node

XEON + Omni-Path (64 Nodes, 28 PPN*)

0

20

40

60

80

100

120

140

1K 2K 4K

La
te

n
cy

 (
u

s)

Message Size

1.5 X

0

50

100

150

200

250

300

350

1K 2K 4K

La
te

n
cy

 (
u

s)

Message Size

Lo
w

er is b
etter

mailto:panda@cse.ohio-state.edu

Network Based Computing Laboratory 27Cluster’16

0

500

1000

1500

2000

2500

3000

8K 16K 32K 64K 128K 256K 512K

Message Size
MVAPICH2 DPML

0

20

40

60

80

100

120

128 256 512 1K 2K 4K

La
te

n
cy

 (
u

s)

Message Size
MVAPICH2 DPML

Performance of MPI_Allreduce On InfiniBand

• DPML outperform MVAPICH2 for most of the medium and large message range

– With 512K bytes, 3X improvement of DPML

• Higher benefits of DPML as the message size increases

XEON + IB (64 Nodes, 28 PPN)

3 XLo
w

er is b
etter

Network Based Computing Laboratory 28Cluster’16

• Designed multi-leader based collective operations

– Capable of taking advantage of high-end features offered by modern network interconnects

• Modeled and analyzed proposed design theoretically

• The benefits were evaluated on different architectures

• The DPML design is released as a part of MVAPICH2-X 2.3b! Check out:

– http://mvapich.cse.ohio-state.edu/overview/#mv2X

• Studied the interplay between communication pattern of applications and different tag

matching schemes

• Proposes, designed and implemented a dynamic and adaptive tag matching scheme capable to

adapting dynamically to the communication characteristics of applications

• The adaptive approach opens up a new direction to design tag matching schemes for next-

generation exascale systems

Conclusions & Future Work

