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Supercomputing systems scaling rapidly

• Multi- and Many-core architectures

• High-performance Interconnects

InfiniBand and Omni-Path are popular HPC Interconnects

• Low-latency and High-bandwidth

• 192 systems (39%) in Jun’17 Top500 use IB

MPI used by vast majority of HPC applications

• Helping applications scale to thousands of cores

• Large systems exposing new scalability issues

Current Trends in HPC
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Components of an MPI Library

HPC Application

MPI Library
Blocking/Non-Blocking 

Collectives
MPI-3 RMA

(Remote Memory Access)

Tag Matching

Point-to-Point

High Performance Interconnects

InfiniBand
High Speed 

Ethernet
Omni-Path RoCE iWARP
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• On the receiver side, one needs to match the incoming 

message with the message that was posted by receiver

• Three parameters should match

– Context id, Source Rank, Tag

– Wildcards (MPI_ANY_SRC, MPI_ANY_TAG) introduce additional complexity

• Two kinds of the queues are involved in the receiver side

– Posted queue

– Unexpected queue

MPI Tag Matching 101
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• Most MPI libraries use double linked list for unexpected and posted queues

• Message to be removed could be in any position of the queue

– Removal time in the best case is O(1) and in the average case is linear O(N)

• Tag matching is in the critical path for point-to-point based operations

• Number of the processes in a job is increasing 

– Future extreme-scale systems are expected to have millions of cores*

– Multithreaded programming models

• All can push the search functions to go deeper in the lists

– Impose significant overhead on the performance

* Thakur R, Balaji P, Buntinas D, Goodell D, Gropp W, Hoefler T, Kumar S, Lusk E, Träff JL. MPI at Exascale. Proceedings of SciDAC. 2010 Jul;2:14-35.

Search Time Analysis of the Default Double Linked List Design
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• Based on the Bin-based and default simple double linked list scheme

• Three phases 

– Starts with the default design

– Observes the communication pattern for each process during the runtime

– If all the conditions are held, it begins to convert the default scheme to the Bin-

based scheme

• Each process can have its own scheme

– Some may stay at the default scheme, some may need to convert to bin-based 

scheme

Proposed Adaptive Design
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• For each of the posted and unexpected queues, we consider the following 

thresholds

– Number of the calls to the tag matching functions in the library (CALLS_NUM)

– The average number of queue look-up attempts per CALLS_NUM 

(MACTCH_ATTMPS)

• Each process maintains both during the runtime 

• If both thresholds are crossed

– Adaptive design changes from the double linked list scheme to the bin-based scheme

Proposed Adaptive Design (Cont’d)
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• Currently, conversion is one way from default to bin-based scheme 

and may occur only one time through the entire runtime

• These thresholds are fixed through entire runtime and they are 

configurable

– We have tuned them based on empirical analysis using OSU micro benchmarks

• We consider two possible sizes for NUM_BINS

– ¼  JOB_SIZE and ½ JOB_SIZE

– Based on MATCH_ATTMPS, we decide which one to choose

Proposed Adaptive Design (Cont’d)
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Summary of Tag Matching Performance

• Comparison of different designs/benchmarks at 512 processes on RI

• Adaptive design shows the best performance
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Summary of Memory Consumed for Tag Matching

• Comparison of different designs/ benchmarks at 512 processes on RI with 

default design

• Adaptive design shows minimal memory overhead
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• Convenient abstraction to implement group communication 

operations 

• Widely used across various scientific domains

– Owing to their ease of use and performance portability

• One of the most popular collective operations: MPI_Allreduce

– 37% of communication time

• MPI_Allreduce reduces values from all processes and distribute 

the result back to all processes

MPI Reduction Collectives 101
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• Tree-based strategies

– Recursive Doubling 

• Based on point-to-point operation

• High parallelism for computation

– All the process are involved in computation

• Pairs distance doubles after each step

• Log (P*) steps

• Hierarchical strategy 

– A two-level approach

• Intra-node reduction by root + inter-node Allreduce

• Computations are done by the root process of each node

Existing Designs for MPI_Allreduce 

* Bloch et al. Scalable Hierarchical Aggregation Protocol (SHArP): A Hardware Architecture for Efficient Data Reduction

• Network offload based mechanism

– Scalable Hierarchical Aggregation Protocol (SHArP*) by Mellanox

•Management and execution of MPI operations in the network 

by using SHArP

•Similar to hierarchical strategy

– QPI transfer to send everything to same socket

mailto:panda@cse.ohio-state.edu
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• Using OSU Micro benchmark suite*

• “Multiple Bandwidth Test”

– Back-to-back messages

• Sent to a pair before waiting for receive

• Evaluates the aggregate unidirectional bandwidth between 

multiple pairs of processes

• 1) Xeon + IB, 2)Xeon + Omni-Path, and 3) KNL + Omni-Path

Relative Throughput of Different Architectures

* http://mvapich.cse.ohio-state.edu/benchmarks/
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Communication Characteristics of Modern Architectures:
InfiniBand Interconnect

• The relative throughput close to 
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• Support many concurrent intra-
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Communication Characteristics of Modern Architectures:
Omni-Path Interconnect

• The relative throughput of one for 

large messages 

• Supports many concurrent 

communications for small and 

medium message range

• Similar behavior observed for Xeon + 

Omni-Path
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Performance limitations of Existing Designs for MPI_Allreduce

• Does not take advantage of large number of cores and high concurrency in 

communication

• Does not take advantage of shared memory collectives

• Needs kernel support for zero-copy communication for large messages 

in same node

• Too many inter-node communication for large PPNs

• Limited performance due to extra QPI transfers

• Limited computing power of switches limits its performance for medium 

and large message ranges
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Design Outline
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DPML Design Phases

• Phase 1:  Copy to shared 

Memory

• Phase 2:  Parallel Intra-

node reduction by the 
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DPML Design Phases

• Phase 1:  Copy to shared 

Memory

• Phase 2:  Parallel Intra-

node reduction by the 

leaders 
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…R’1 … R’2 … R’L …Node 1
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…R’1 … R’2 … R’L …Node 3
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DPML Design Phases

• Phase 1:  Copy to shared 

Memory

• Phase 2:  Parallel Intra-

node reduction by the 

leaders 
• Phase 3:  Parallel Inter-

node Allreduce by the 

leaders with same index
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DPML Design Phases
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• DPML always outperform MVAPICH2 for all medium and large message range

• DPML outperform IMPI in medium message range

• High parallelism of DPML benefits KNL more than XEON
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Performance of MPI_Allreduce On InfiniBand

• DPML outperform MVAPICH2 for most of the medium and large message range

– With 512K bytes, 3X improvement of DPML 

• Higher benefits of DPML as the message size increases

XEON + IB (64 Nodes, 28 PPN)
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• Designed multi-leader based collective operations 

– Capable of taking advantage of high-end features offered by modern network interconnects

• Modeled and analyzed proposed design theoretically 

• The benefits were evaluated on different architectures

• The DPML design is released as a part of MVAPICH2-X 2.3b! Check out:

– http://mvapich.cse.ohio-state.edu/overview/#mv2X

• Studied the interplay between communication pattern of applications and different tag 

matching schemes

• Proposes, designed and implemented a dynamic and adaptive tag matching scheme capable to 

adapting dynamically to the communication characteristics of applications

• The adaptive approach opens up a new direction to design tag matching schemes for next-

generation exascale systems

Conclusions & Future Work


