

High Performance MPI Over Slingshot

Kawthar Shafie Khorassani

shafiekhorassani.1@osu.edu

SC 22 - OSU Booth

Network-based Computing Laboratory

Department of Computer Science and Engineering

The Ohio State University

Introduction

- Frontier at OLCF (#1 Supercomputer on Top500 System) deployed with Slingshot-11 networking across nodes
- MPI-level communication and performance on upcoming networking for exascale systems (i.e. Frontier & El-Capitan)

#1 Supercomputers Top500 Over Time ...

Sunway TaihuLight ('16-'17)

Summit ('18-'19)

Fugaku ('20-'21)

Frontier ('22)

Top500 Supercomputers Interconnect Statistics

Interconnect System Share

Interconnect Family System Share

Reference: https://www.top500.org

Background

- Many Supercomputers deployed with Mellanox Infiniband Interconnect technology
- MPI Libraries have been optimized over the years to expand on Mellanox Infiniband features and support
- Underlying interconnect technology critical for achieving low latency and high throughput at scale on next-generation exascale systems

Drive future research and innovations to provide scalable and competitive options in this Slingshot ecosystem.

Slingshot Interconnect

High-performance network designed by HPE Cray for upcoming exascale-era systems

- Based on Ethernet
- Adaptive Routing
- Congestion Control
- Isolated Workloads

Empowering the #1 Supercomputer --- Frontier

- Deployed as the interconnect for inter-node communication
- Expected to be deployed on upcoming supercomputers --> El-Capitan at LLNL, Aurora at Argonne

Limitations of State-of-the-art Approaches for Communication

Accessibility and deployment on early access Slingshot systems:

Ecosystem with Slingshot-10 interconnection amongst nodes

Future accessibility and deployment on upcoming Slingshot systems (i.e. El-Capitan and Frontier):

- Slingshot-11
- Deployed over a slingshot fabric and adapter

This second-generation deployment introduces additional challenges for communication libraries to develop functionality over the underlying adapter and fabrics.

Experimental Setup

System & Software Details

Spock Compute Node

Reference: https://docs.olcf.ornl.gov/systems/spock_quick_start_guide.html

Software Details

MPI & Communication Libraries

- CrayMPICH 8.1.14
 - https://docs.nersc.gov/development/programming-models/mpi/cray-mpich/
- MVAPICH2-GDR 2.3.7 & MVAPICH2-X 2.3 & MVAPICH2-3.0a
 - https://mvapich.cse.ohio-state.edu
- OpenMPI 4.1.4 + UCX 1.12.1
 - https://www.open-mpi.org
- RCCL 5.0.2
 - https://github.com/ROCmSoftwarePlatform/rccl

OSU Microbenchmarks 5.9

https://mvapich.cse.ohio-state.edu/benchmarks/

ROCm version 5.0.2

Experiment Details

CrayMPICH 8.1.14

- Module load cray-mpich/8.1.14
- Module load craype-accel-amd-gfx908
- Run: MPICH_GPU_SUPPORT_ENABLED=1

MVAPICH2-3.0a

Configure: --with-device=ch4:ofi --with-libfabric=<path-to-libfabric>

MVAPICH2-GDR 2.3.7

Run: MV2_USE_ROCM=1

MVAPICH-PLUS

Run: MV2 ENABLE GPU=1

OpenMPI 4.1.4 + UCX 1.12.1

- Compile UCX: --with-rocm=<path-to-rocm> --without-knem -without-cuda --enable-optimizations
- Compile OpenMPI: --with-ucx=<path-to-ucx> --without-verbs
- Run: -x UCX_RNDV_THRESH=128

RCCL 5.0.2

Compile: CXX=<path-to-rocm>/bin/hipcc

Overview of the MVAPICH Project

- High Performance open-source MPI Library
- Support for multiple interconnects
 - InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE), AWS
 EFA, OPX, Broadcom RoCE, Intel Ethernet, Rockport Networks, Slingshot 10/11
- Support for multiple platforms
 - x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD)
- Started in 2001, first open-source version demonstrated at SC '02
- Supports the latest MPI-3.1 standard
- http://mvapich.cse.ohio-state.edu
- Additional optimized versions for different systems/environments:
 - MVAPICH2-X (Advanced MPI + PGAS), since 2011
 - MVAPICH2-GDR with support for NVIDIA (since 2014) and AMD (since 2020) GPUs
 - MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014
 - MVAPICH2-Virt with virtualization support, since 2015
 - MVAPICH2-EA with support for Energy-Awareness, since 2015
 - MVAPICH2-Azure for Azure HPC IB instances, since 2019
 - MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019
- Tools:
 - OSU MPI Micro-Benchmarks (OMB), since 2003
 - OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015

- Used by more than 3,290 organizations in 90 countries
- More than 1.63 Million downloads from the OSU site directly
- Empowering many TOP500 clusters (Nov '22 ranking)
 - 7th, 10,649,600-core (Sunway TaihuLight) at NSC, Wuxi, China
 - 19th, 448, 448 cores (Frontera) at TACC
 - 34th, 288,288 cores (Lassen) at LLNL
 - 46th, 570,020 cores (Nurion) in South Korea and many others
- Available with software stacks of many vendors and Linux
 Distros (RedHat, SuSE, OpenHPC, and Spack)
- Partner in the 19th ranked TACC Frontera system
- Empowering Top500 systems for more than 16 years

One Runtime to Rule them all!

High-Performance Computing

Big Data

Data Science

Deep/ Machine Learning

MVAPICH-Plus

(Support for all combinations of CPU, Interconnect, Accelerator, DPU)

Advanced HPC Hardware

Interconnect Technologies

InfiniBand, Omni-Path, Ethernet, Slingshot 10/11, OPX, Broadcom, Rockport

Processor Technologies

x86 (Intel/AMD), ARM, OpenPOWER **Accelerator Technologies**

GPUs (NVIDIA/AMD), FPGAs

Network Offload

Datacenter Processing Units, Switch Offload, Network Adapter Offload

MVAPICH-Plus

- Released on 11/11/2022
- Based on MVAPICH 3.0
- Advanced MPI with unified MVAPICH2-GDR and MVAPICH2-X features
- Support for NVIDIA and AMD GPUs
- Optimized designs for HPC, DL, ML, Big Data and Data Science applications
- Added support for the ch4:ucx and ch4:ofi devices
- Added support for the Cray Slingshot 11 interconnect over OFI
 - Supports Cray Slingshot 11 network adapters
- Added support for the Cornelis OPX library over OFI
 - Supports Intel Omni-Path adapters
- Added support for the Intel PSM3 library over OFI
 - Supports Intel Columbiaville network adapters
- Added support for IB verbs over UCX
 - Supports IB and RoCE network adapters

Features of OFI and UCX Support

- Support a broad range of interconnects with widely used libraries
 - Configure with --with-device=ch4:ofi or --with-device=ch4:ucx
- Runtime provider selection via CVARs
 - MPIR_CVAR_OFI_USE_PROVIDER=<prov>
- System default, embedded, or custom installation of OFI/UCX
 - Configure with --with-libfabric=embedded or --withlibfabric=<path>
 - Configure with --with-ucx=embedded or --with-ucx=<path>
- Enhanced MVAPICH2 collective designs

Performance Evaluation

CPU

Point-to-Point Performance - Intra-Node CPU

Peak Bandwidth:

- MVAPICH2-X 39.2 GB/s
- OpenMPI+UCX 38.2GB/s
- CrayMPICH 42 GB/s

Latency at 4 Bytes:

- MVAPICH2-X 0.22 us
- OpenMPI+UCX 0.31 us
- CrayMPICH **0.27 us**

AMD Epyc Rome CPUs on Spock System

Point-to-Point Performance - Inter-Node CPU

Slingshot-10 Interconnect for over network communication (12.5+12.5 GB/s)

Peak Bandwidth:

- MVAPICH2-X 122.4 MB/s
- OpenMPI+UCX 122.4 MB/s
- CrayMPICH 122.4 MB/s

Latency at 4 Bytes:

- MVAPICH2-X 2.55 us
- OpenMPI+UCX 2.27 us
- CrayMPICH 2.07 us

AMD Epyc Rome CPUs on Spock System

Collectives Performance - CPU

REDUCE

ALLREDUCE

Reduce (small messages)

Allreduce (small messages)

Reduce (large messages)

Allreduce (large messages)

256 CPUs - 4 Nodes & 64 PPN on Spock System

Performance Evaluation

GPU

GPU-Aware (CUDA/ROCm) MPI Library: MVAPICH-GPU

- Standard MPI interfaces used for unified data movement
- Takes advantage of Unified Virtual Addressing (>= CUDA 4.0)
- Overlaps data movement from GPU with RDMA transfers

```
At Sender:

MPI_Send(s_devbuf, size, ...);

At Receiver:

MPI_Recv(r_devbuf, size, ...);
```

High Performance and High Productivity

Point-to-Point Performance - Intra-Node GPU

All GPUs connected by Infinity Fabric (46+46GB/s)

- PCI Bar Mapped Memory for small message sizes.
- ROCm Inter-Process Communication (IPC) used in med-large message range.

Peak Bandwidth:

- MVAPICH2-GDR 52.5 GB/s
- OpenMPI+UCX 30.2 GB/s
- CrayMPICH 88 GB/s

Latency at 4 Bytes:

- MVAPICH2-GDR 2.01 us
- OpenMPI+UCX 3.79 us
- CrayMPICH 2.44 us

MI100 GPUs on Spock System

Point-to-Point Performance - Inter-Node GPU

Slingshot-10 Interconnect for over network communication (12.5+12.5 GB/s)

Peak Bandwidth:

- MVAPICH2-GDR 9.9 GB/s
- OpenMPI+UCX 9.8 GB/s
- CrayMPICH 9.2 GB/s

Latency at 4 Bytes:

- MVAPICH2-GDR 3.73 us
- OpenMPI+UCX 4.23 us
- CrayMPICH **3.8 us**

MI100 GPUs on Spock System

Collectives Performance - GPU

REDUCE

ALLREDUCE

Allreduce (large messages)

64 GPUs - 16 Nodes & 4 GPUs Per Node on Spock System

Performance Evaluation Slingshot-11

CPU

Frontier Compute Node

- 1 HPC and AI Optimized 3rd Gen AMD EPYC
 CPU
- 4 Purpose Built AMD Instinct 250X GPUs
- **CPU-GPU Interconnect:** AMD Infinity Fabric
- System Interconnect: Multiple Slingshot NICs providing 100 GB/s network bandwidth.
 - Slingshot network which provides adaptive routing, congestion management and quality of service.

Reference: https://www.olcf.ornl.gov/frontier/

Point-to-Point Performance - Intra-Node CPU

LATENCY

BANDWIDTH

BI-BANDWIDTH

System with Slingshot-11 Networking

Point-to-Point Performance - Inter-Node CPU

LATENCY

BANDWIDTH

BI-BANDWIDTH

System with Slingshot-11 Networking

Performance Evaluation Slingshot-11

GPU

Tioga Compute Node

- CPU Architecture: AMD Trento 64 Cores/Nodes
- GPU Architecture: AMD MI-250X
- **CPU-GPU Interconnect:** AMD Infinity Fabric
- **System Interconnect:** HPE Slingshot-11

Reference: https://hpc.llnl.gov/hardware/compute-platforms/tioga

Point-to-Point Inter-Node Performance

Bandwidth:

Tioga - ROCm-5.3.0 (MI250-X GPUs)

Collective Performance

Allreduce:

Tioga - ROCm-5.3.0 (MI250-X GPUs) - 8 GPUs

References

Performance Evaluation of MPI on the Slingshot Interconnect. K. Khorassani, H. Subramoni, D. Panda. OpenFabrics Alliance 2022 Workshop (OFA 2022)., April 2022.

High Performance MPI over the Slingshot Interconnect: Early Experiences. K. Khorassani, C. Chen, B. Ramesh, A. Shafi, H. Subramoni, D. Panda Practice and Experience in Advanced Research Computing, Jul 2022. [Best Student Paper Award]

High Performance MPI Over Slingshot. K. Khorassani. MVAPICH User Group Conference (MUG 2022), August 2022.

High Performance MPI over the Slingshot Interconnect. K. Khorassani, C. Chen, B. Ramesh, A. Shafi, H. Subramoni, D. Panda. *Accepted at Journal of Computer Science and Technology Special Issue, October 2022.*

THANK YOU!

Network-Based Computing Laboratory http://nowlab.cse.ohio-state.edu/

The High-Performance MPI/PGAS

Project

http://mvapich.cse.ohio-state.edu/

The High-Performance Big Data Project http://hibd.cse.ohio-state.edu/

The High-Performance Deep Learning Project

http://hidl.cse.ohio-state.edu/

Several Talks at OSU Booth #4035

Mvapich.cse.ohio-state.edu