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High-End Computing (HEC): ExaFlop & ExaByte 
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Trends for Commodity Computing Clusters in the Top 500 
List (http://www.top500.org) 
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Drivers of Modern HPC Cluster Architectures 

 

• Multi-core/many-core technologies 

• Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE) 

• Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), NVMe-SSD 

• Accelerators (NVIDIA GPGPUs and Intel Xeon Phi) 

 
 

 
 

 

Accelerators / Coprocessors  
high compute density, high 

performance/watt 
>1 TFlop DP on a chip  

High Performance 
Interconnects - InfiniBand 
<1usec latency, 100Gbps 

Bandwidth> 

Tianhe – 2 Titan Stampede Tianhe – 1A 
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Multi-core Processors 
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SSD, NVMe-SSD, 
NVRAM 



• 259 IB Clusters (51%) in the June 2015 Top500 list   

      (http://www.top500.org) 

• Installations in the Top 50 (24 systems): 

Large-scale InfiniBand Installations 

519,640 cores (Stampede) at TACC (8th) 76,032 cores (Tsubame 2.5) at Japan/GSIC (22nd) 

185,344 cores (Pleiades) at NASA/Ames (11th) 194,616 cores (Cascade) at PNNL (25th) 

72,800 cores Cray CS-Storm in US (13th) 76,032 cores (Makman-2) at Saudi Aramco (28th) 

72,800 cores Cray CS-Storm in US (14th) 110,400 cores (Pangea) in France (29th) 

265,440 cores SGI ICE at Tulip Trading Australia (15th) 37,120 cores (Lomonosov-2) at Russia/MSU (31st) 

124,200 cores (Topaz) SGI ICE at ERDC DSRC in US  (16th) 57,600 cores (SwiftLucy) in US (33rd) 

72,000 cores (HPC2) in Italy (17th) 50,544 cores (Occigen) at France/GENCI-CINES (36th) 

115,668 cores (Thunder) at AFRL/USA (19th) 76,896 cores (Salomon) SGI ICE in Czech Republic (40th) 

147,456 cores (SuperMUC) in  Germany (20th) 73,584 cores (Spirit) at AFRL/USA (42nd) 

86,016 cores (SuperMUC Phase 2) in  Germany (21st) and many more! 
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Parallel Programming Models Overview 

P1 P2 P3 

Shared Memory 

P1 P2 P3 

Memory Memory Memory 

P1 P2 P3 

Memory Memory Memory 

Logical shared memory 

Shared Memory Model 

SHMEM, DSM 

Distributed Memory Model  

MPI (Message Passing Interface) 

Partitioned Global Address Space (PGAS) 

Global Arrays, UPC, Chapel, X10, CAF, … 

• Programming models provide abstract machine models 

• Models can be mapped on different types of systems 

– e.g. Distributed Shared Memory (DSM), MPI within a node, etc. 



• Message Passing Library standardized by MPI Forum 

– C and Fortran 

• Goal: portable, efficient and flexible standard for writing 

parallel applications 

• Not IEEE or ISO standard, but widely considered “industry 

standard” for HPC application 

• Evolution of MPI 

– MPI-1: 1994 

– MPI-2: 1996 

– MPI-3.0: 2008 – 2012, standardized before SC ’12 

– MPI-3.1, standardized on June 4, 2015 

– Next plans for MPI 4.0 
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MPI Overview and History 

HP-CAST (Nov '15) 



• Point-to-point Two-sided Communication 

• Collective Communication 

• One-sided Communication 

• Job Startup 

• Parallel I/O 

Major MPI Features 
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• Power required for data movement operations is one of 

the main challenges 

• Non-blocking collectives 

– Overlap computation and communication 

• Much improved One-sided interface 

– Reduce synchronization of sender/receiver 

• Manage concurrency 

– Improved interoperability with PGAS (e.g. UPC, Global Arrays, 

OpenSHMEM) 

• Resiliency 

– New interface for detecting failures 
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How does MPI Plan to Meet Exascale Challenges? 



• MPI 3.0 Features 

• MPI 3.1 Features 

• MPI 4.0 Features 

• Upcoming Trends for PGAS and Hybrid MPI+PGAS 

• Challenges in Supporting MPI, PGAS and Hybrid MPI+PGAS 

Features and Solutions 

HP-CAST (Nov '15) 10 

Presentation Outline 



• Major Features 

– Non-blocking Collectives 

– Improved One-Sided (RMA) Model 

– MPI Tools Interface 

• Specification is available from: http://www.mpi-

forum.org/docs/mpi-3.0/mpi30-report.pdf 
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Major New Features in MPI-3  

http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
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http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
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Problems with Blocking Collective Operations 
Application 

 Process 

Application 

 Process 

Application 

 Process 

Application 

 Process 

Computation 

Communication 

• Communication time cannot be used for compute 

– No overlap of computation and communication 

– Inefficient  



• Application processes schedule collective operation 

• Check periodically if operation is complete 

• Overlap of computation and communication => Better Performance 

• Catch: Who will progress communication  
HP-CAST (Nov '15) 13 

Concept of Non-blocking Collectives 
Application 

 Process 

Application 

 Process 

Application 

 Process 

Application 

 Process 

Computation 

Communication 

Communication 

 Support Entity 

Communication 

 Support Entity 

Communication 

 Support Entity 

Communication 

 Support Entity 

Schedule 

Operation 

Schedule 

Operation 

Schedule 

Operation 

Schedule 

Operation 

Check if 

Complete 

Check if 

Complete 

Check if 

Complete 

Check if 

 Complete 

Check if 

Complete 

Check if 

Complete 

Check if 

Complete 

Check if 

 Complete 



void main() 

{ 

 MPI_Init() 

 ….. 

 MPI_Ialltoall(…) 

 Computation that does not depend on result of Alltoall 

 MPI_Test(for Ialltoall) /* Check if complete (non-blocking) */ 

 Computation that does not depend on result of Alltoall 

 MPI_Wait(for Ialltoall) /* Wait till complete (Blocking) */ 

 … 

 MPI_Finalize() 

} 

HP-CAST (Nov '15) 14 

How do I write applications with NBC? 



• Non-blocking Collectives 

• Improved One-Sided (RMA) Model 

• MPI Tools Interface 

HP-CAST (Nov '15) 15 

MPI-3 Features 
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One-sided Communication Model 
HCA HCA HCA P 1 P 2 P 3 

Write to P2 

Write to P3 

Write Data from P1 

Write data from P2 

Post to HCA 

Post to HCA 

Buffer at P2 Buffer at P3 

Global Region Creation 
(Buffer Info Exchanged) 

Buffer at P1 

HCA Write 

Data to P2 

HCA Write 

Data to P3 



• Non-blocking one-sided communication routines  

– Put, Get  

– Accumulate, Get_accumulate 

– Atomics 

• Flexible synchronization operations to control initiation 

and completion 

HP-CAST (Nov '15) 17 

MPI-3 One-Sided Primitives 

MPI One-sided Synchronization/Completion Primitives  

Synchronization  Completion  Win_sync 

Lock/ 
Unlock 

Lock_all/ 
Unlock_all 

Fence 

Post-Wait/ 
 Start-Complete 

Flush 

Flush_all 

Flush_local 

Flush_local_all 



• Network adapters can provide 

RDMA feature that doesn’t require 

software involvement at remote 

side 

• As long as puts/gets are executed 

as soon as they are issued, overlap 

can be achieved 

• RDMA-based implementations do 

just that  

HP-CAST (Nov '15) 18 

Overlapping Communication with MPI-3-RMA 



• Non-blocking Collectives 

• Improved One-Sided (RMA) Model 

• MPI Tools Interface 

HP-CAST (Nov '15) 19 

MPI-3 Features 
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MPI Tools Interface 

• Introduced to expose internals of MPI tools and applications 

• Generalized interface – no defined variables in the standard 

• Variables can differ between 

• MPI implementations 

• Compilations of same MPI library (production vs debug) 

• Executions of the same application/MPI library 

• There could be no variables provided 

• Two types of variables supported 

• Control Variables (CVARS) 

•  Typically used to configure and tune MPI internals 

•  Environment variables, configuration parameters and toggles 

• Performance Variables (PVARS) 

•  Insights into performance of an MPI library 

•  Highly-implementation specific 

•  Memory consumption, timing information, resource-usage, data transmission info. 

•  Per-call basis or an entire MPI job 

 



• Who??? 

– Interface intended for tool developers 

• Generally will do *anything* to get the data 

• Are willing to support the many possible variations 

• How??? 

–  Can be called from user code 

– Useful for setting control variables for performance 

– Documenting settings for understanding performance 

– Care must be taken to avoid code that is not portable 

– Several workflows based on role: End Users / Performance Tuners / MPI Implementers  

•  Two main workflows 

–  Transparently using MPIT-Aware external tools 

–  Co-designing applications and MPI-libraries using MPI-T 

HP-CAST (Nov '15) 21 

Who should use MPI-T and How? 

Return Var. 
Information 

MPI Library with MPI-T Support 

Applications and External Tools 

Query All 
Variables 

Measured Interval 

Start 
Counter 

Stop 
Counter 

Counter 
Value 



MPI_T_init_thread() 

MPI_T_cvar_get_info(MV2_EAGER_THRESHOLD) 

if (msg_size < MV2_EAGER_THRESHOLD + 1KB) 

 MPI_T_cvar_write(MV2_EAGER_THRESHOLD, +1024) 

MPI_Send(..) 

MPI_T_finalize() 
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Co-designing Applications to use MPI-T 

Initialize MPI-T 

Get #variables 

Query Metadata 

Allocate Session 

Allocate Handle 

Read/Write/Reset 

Start/Stop var 

Free Handle 

Finalize MPI-T 

Free Session 

Allocate Handle 

Read/Write var 

Free Handle 

Performance 

Variables 

Control 

Variables 

Example: Optimizing the eager limit dynamically -> 



• MPI 3.0 Features 

• MPI 3.1 Features 

• MPI 4.0 Features 

• Upcoming Trends for PGAS and Hybrid MPI+PGAS 

• Challenges in Supporting MPI, PGAS and Hybrid MPI+PGAS 

Features and Solutions 

HP-CAST (Nov '15) 23 

Presentation Outline 



MPI-3.1 – Features 

• Standardized in June 2015 meeting. Available from 

http://www.mpi-forum.org/docs/mpi-3.1/mpi31-

report.pdf 

• Primarily Errata Items 

– Datatype Allowed in Overlapping Accumulates  

– Deprecate MPI_Cancel for send requests 

– Correcting Shared Memory Access with RMA 

– Add Immediate for Non-blocking Collective I/O routines 

• Similar to Non-blocking Collective communication operations 

• E.g. MPI_File_iread_all (MPI_File file, void *buf, int count, 

MPI_Datatype type, MPI_Request *req); 
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http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf


• MPI 3.0 Features 

• MPI 3.1 Features 

• MPI 4.0 Features 

• Upcoming Trends for PGAS and Hybrid MPI+PGAS 

• Challenges in Supporting MPI, PGAS and Hybrid MPI+PGAS 

Features and Solutions 
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Presentation Outline 



• Dynamic Endpoints 

• Persistent collective operations 

– Explore “streams” and “channels” to cut overhead 

– Explore I/O persistence 

• Better support hybrid programming models 

• Support for fault tolerance 

– User Level Failure Migration (ULFM) 

– Fault Tolerance for MPI – (Re-init) 

• Performance Assertions and Hints 

• Enhancements to RMA/One-sided communication 

• Large Datatype Support 

HP-CAST (Nov '15) 26 

MPI-4.0 - Proposed Features 



• Introduces a new communicator creation function 

• Can be used to create additional ranks, or endpoints, at an 

existing MPI process 

• Endpoints behave the same as processes and can be 

associated with threads, allowing threads to fully 

participate in MPI operation 

HP-CAST (Nov '15) 27 

Dynamic Endpoints 



• Use concept of “streams” and “channels” to cut the overhead 

• Explore I/O persistence 

HP-CAST (Nov '15) 28 

Persistent Collectives 

User Level Failure Mitigation (ULFM) 

• Allows the application react to failures but maintain a minimal 

code path for failure-free execution 

• Processes can invalidate and shrink communication objects and 

prevent waiting indefinitely 

• Failures do not alter state of MPI communicators  

• Allows point-to-point communication to continue between non-

faulty processes 



• Enhance notification in passive synchronization  

– Add notification counter associated with the window is 

incremented at the target after each epoch 

– Processes can query number of notifications received 

HP-CAST (Nov '15) 29 

RMA Enhancements 

• Proposed non-blocking I/O semantics use MPI_Request 

• MPI_Test is used to check for completion 

Immediate Non-blocking I/O 

• Current datatype interface supports count up to INT_MAX 

• Proposed function MPI_Type_contiguous_x allows the 

creation of very large contiguous datatypes 

Very Large Datatype Support 



• Active Messages 

• Tools: Extensions for MPI_T 

• Generalized Requests 

• MPI+X (special focus on MPI+CAF) 

• New assertions for passive-target epochs 

• MPI Plans (An alternate strategy for collective 

communication) 

HP-CAST (Nov '15) 30 

MPI-4.0 - Additional Features 



• MPI 3.0 Features 

• MPI 3.1 Features 

• MPI 4.0 Features 

• Upcoming Trends for PGAS and Hybrid MPI+PGAS 

• Challenges in Supporting MPI, PGAS and Hybrid MPI+PGAS 

Features and Solutions 

HP-CAST (Nov '15) 31 

Presentation Outline 
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Partitioned Global Address Space (PGAS) Models 

HP-CAST (Nov '15) 

• Key features 

- Simple shared memory abstractions  

- Light weight one-sided communication  

- Easier to express irregular communication 

• Different approaches to PGAS  

- Languages  

• Unified Parallel C (UPC) 

• Co-Array Fortran (CAF) 

• X10 

• Chapel 

- Libraries 

• OpenSHMEM 

• Global Arrays 



Hybrid (MPI+PGAS) Programming 

• Application sub-kernels can be re-written in MPI/PGAS based 

on communication characteristics 

• Benefits: 

– Best of Distributed Computing Model 

– Best of Shared Memory Computing Model 

• Exascale Roadmap*:  

– “Hybrid Programming is a practical way to 

 program exascale systems” 

 

 

* The International Exascale Software Roadmap, Dongarra, J., Beckman, P. et al., Volume 25, Number 1, 2011, 
International Journal of High Performance Computer Applications, ISSN 1094-3420 

Kernel 1 
MPI 

Kernel 2 
MPI 

Kernel 3 
MPI 

Kernel N 
MPI 

HPC Application 

Kernel 2 
PGAS 

Kernel N 
PGAS 

HP-CAST (Nov '15) 33 



• MPI 3.0 Features 

• MPI 3.1 Features 

• MPI 4.0 Features 

• Upcoming Trends for PGAS and Hybrid MPI+PGAS 

• Challenges in Supporting MPI, PGAS and Hybrid MPI+PGAS 

Features and Solutions 

HP-CAST (Nov '15) 34 
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Middleware  

Designing High-Performance Middleware for HPC 
and Big Data Applications: Challenges  

Programming Models 
MPI, PGAS (UPC, Global Arrays, OpenSHMEM), CUDA, OpenMP, OpenACC, Cilk, 

Hadoop (MapReduce), Spark (RDD, DAG), etc. 

Application Kernels/Applications  

Networking Tech. 
(InfiniBand, 40/100GigE,  

Aries, and OmniPath) 

 Multi/Many-core 
Architectures 

35 

Accelerators 
(NVIDIA and MIC) 
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Co-Design 

Opportunities 

and 

Challenges 

across Various 

Layers 

 

Performance 

Scalability 

Fault-

Resilience 

Communication Library or Runtime for Programming Models 

Point-to-point 

Communication 

(two-sided and 

one-sided 

Collective 

Communication 

Energy- 

Awareness 

Synchronization 

and Locks 

I/O and 

File Systems 

Fault 

Tolerance 

Storage Tech. 
(HDD, SSD, and 

 NVMe-SSD) 



• Scalability for million to billion processors 
– Support for highly-efficient inter-node and intra-node communication (both two-sided 

and one-sided) 

• Scalable Collective communication 
– Offload 

– Non-blocking 

– Topology-aware 

• Balancing intra-node and inter-node communication for next generation 
multi-core (128-1024 cores/node) 

– Multiple end-points per node 

• Support for efficient multi-threading 

• Integrated Support for GPGPUs and Accelerators 

• Fault-tolerance/resiliency 

• QoS support for communication and I/O 

• Support for Hybrid MPI+PGAS programming (MPI + OpenMP, MPI + UPC, 
MPI + OpenSHMEM, CAF, …) 

• Virtualization  

• Energy-Awareness 

 

Broad Challenges in Designing  Communication Libraries for 
(MPI+X) at Exascale 

36 
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• High Performance open-source MPI Library for InfiniBand, 10-40Gig/iWARP, and RDMA over 

Converged Enhanced Ethernet (RoCE) 

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Available since 2002 

– MVAPICH2-X (MPI + PGAS), Available since 2011 

– Support for GPGPUs  (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014 

– Support for Virtualization (MVAPICH2-Virt), Available since 2015 

– Support for Energy-Awareness (MVAPICH2-EA), Available since 2015 

– Used by more than  2,475 organizations in 76 countries 

– More than 300,000 downloads from the OSU site directly 

– Empowering many TOP500 clusters (June ‘15 ranking) 

•  8th ranked 519,640-core cluster (Stampede) at  TACC 

• 11th ranked 185,344-core cluster (Pleiades) at NASA 

• 22nd ranked 76,032-core cluster (Tsubame 2.5) at Tokyo Institute of Technology and many others 

– Available with software stacks of many vendors and Linux Distros (RedHat and SuSE) 

– http://mvapich.cse.ohio-state.edu 

• Empowering Top500 systems for over a decade 

– System-X from Virginia Tech (3rd in Nov 2003, 2,200 processors, 12.25 TFlops) -> 

– Stampede at TACC (8th in Jun’15, 519,640 cores, 5.168 Plops) 

MVAPICH2 Software 

37 HP-CAST (Nov '15) 
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MVAPICH2 Software Family  

Requirements MVAPICH2 Library to use 

MPI with IB, iWARP and RoCE MVAPICH2 

Advanced MPI, OSU INAM, PGAS and MPI+PGAS with 
IB and RoCE 

MVAPICH2-X 

MPI with IB & GPU MVAPICH2-GDR 

MPI with IB & MIC MVAPICH2-MIC 

HPC Cloud with MPI & IB MVAPICH2-Virt 

Energy-aware MPI with IB, iWARP and RoCE MVAPICH2-EA 



• Non-blocking Collectives 

• Support for MPI-T Interface 

• Hybrid MPI+PGAS programming (MPI + OpenSHMEM, MPI + UPC, …) with 
Unified Runtime  

• Support for Virtualization with SR-IOV 

 

Overview of A Few Challenges being Addressed by 
MVAPICH2/MVAPICH2-X for Exascale 

39 
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PCG-Default Modified-PCG-Offload

Co-Design with MPI-3 Non-Blocking Collectives and Collective 
Offload Co-Direct Hardware (Available since MVAPICH2-X 2.2a) 

40 

Modified  P3DFFT with Offload-Alltoall does up to 
17% better than default version (128 Processes) 

K. Kandalla, et. al.. High-Performance and Scalable Non-Blocking 

All-to-All with Collective Offload on InfiniBand Clusters: A Study 

with Parallel 3D FFT, ISC 2011 
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HPL-Offload HPL-1ring HPL-Host

HPL Problem Size (N) as % of Total Memory 

4.5% 

Modified  HPL with Offload-Bcast does up to 4.5% 
better than default version (512 Processes) 

Modified  Pre-Conjugate Gradient Solver with 
Offload-Allreduce does up to 21.8% better than 
default version 

K. Kandalla, et. al, Designing Non-blocking Broadcast with Collective 

Offload on InfiniBand Clusters: A Case Study with HPL, HotI 2011 

K. Kandalla, et. al., Designing Non-blocking Allreduce with Collective 
Offload on InfiniBand Clusters: A Case Study with Conjugate Gradient 
Solvers, IPDPS ’12 

21.8% 

Can Network-Offload based Non-Blocking Neighborhood MPI 
Collectives Improve Communication Overheads of Irregular Graph  
Algorithms? K. Kandalla, A. Buluc, H. Subramoni, K. Tomko, J. Vienne, 
L. Oliker, and D. K. Panda, IWPAPS’ 12 



• Initial focus on performance variables 

•  Variables to track different components 

–  MPI library’s internal memory usage 

–  Unexpected receive queue 

–  Registration cache 

–  VBUF allocation 

–  Shared-memory communication 

–  Collective operation algorithms 

–  IB channel packet transmission 

– Many more in progress.. 
HP-CAST (Nov '15) 41 

MPI-T Support in MVAPICH2 

Memory Usage: 
- current level 

- maximum watermark 

Registration cache: 
- hits 

- misses 

Pt-to-pt messages: 
- unexpected queue length 

- unexp. match attempts 
- recvq. length 

Shared-memory: 
- LiMIC2/ CMA 

- buffer pool size & usage 

Collective ops: 
- comm. creation 

- #algorithm invocations 
[Bcast – 8; Gather – 10] 

… 

InfiniBand N/W: 
- #control packets 

- #out-of-order packets 



MVAPICH2-X for Advanced MPI and Hybrid MPI + PGAS 
Applications 

HP-CAST (Nov '15) 

MPI, OpenSHMEM, UPC, CAF or  Hybrid (MPI + PGAS) 

Applications 

Unified MVAPICH2-X Runtime 

InfiniBand, RoCE, iWARP 

OpenSHMEM Calls MPI Calls UPC Calls 

• Unified communication runtime for MPI, UPC, OpenSHMEM, CAF available with 

MVAPICH2-X 1.9 (2012) onwards!  

– http://mvapich.cse.ohio-state.edu 

• Feature Highlights 

– Supports MPI(+OpenMP), OpenSHMEM, UPC, CAF, MPI(+OpenMP) + OpenSHMEM, 

MPI(+OpenMP) + UPC  

– MPI-3 compliant, OpenSHMEM v1.0 standard compliant, UPC v1.2 standard 

compliant (with initial support for UPC 1.3), CAF 2008 standard (OpenUH) 

– Scalable Inter-node and intra-node communication – point-to-point and collectives 

CAF Calls 

42 
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Application Level Performance with Graph500 and Sort 
Graph500 Execution Time 

 

J. Jose, S. Potluri, H. Subramoni, X. Lu, K. Hamidouche, K. W. Schulz, H. Sundar, D. K. Panda, Designing Scalable Out-of-core Sorting with Hybrid 

MPI+PGAS Programming Models, PGAS ‘14, Oct. 2014. 

J. Jose, S. Potluri, K. Tomko and D. K. Panda, Designing Scalable Graph500 Benchmark with Hybrid MPI+OpenSHMEM Programming Models, 

International Supercomputing Conference (ISC’13), June 2013 
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• Performance of Hybrid (MPI+ 
OpenSHMEM) Graph500 Design 

• 8,192 processes 
 - 2.4X improvement over MPI-CSR 

 - 7.6X improvement over MPI-Simple 

• 16,384 processes 
 - 1.5X improvement over MPI-CSR 

 - 13X improvement over MPI-Simple 

 

Sort Execution Time 
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51% 

• Performance of Hybrid 
(MPI+OpenSHMEM) Sort Application 

• 4,096 processes, 4 TB Input Size 
 - MPI – 2408 sec; 0.16 TB/min 

 - Hybrid – 1172 sec; 0.36 TB/min 

 - 51% improvement over MPI-design 
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• Non-blocking Collectives 

• Support for MPI-T Interface 

• Hybrid MPI+PGAS programming (MPI + OpenSHMEM, MPI + UPC, …) with 
Unified Runtime  

• Support for Virtualization with SR-IOV 

 

Overview of A Few Challenges being Addressed by 
MVAPICH2/MVAPICH2-X for Exascale 
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• IDC expects that by 2017, HPC ecosystem revenue will jump to a 

record $30.2 billion. IDC foresees public clouds, and especially custom 

public clouds, supporting an increasing proportion of the aggregate 

HPC workload as these cloud facilities grow more capable and mature 

– Courtesy: http://www.idc.com/getdoc.jsp?containerId=247846 

• Combining HPC with Cloud is still facing challenges because of the 

performance overhead associated virtualization support 

– Lower performance of virtualized I/O devices 

• HPC Cloud Examples 

– Amazon EC2 with Enhanced Networking 

• Using Single Root I/O Virtualization (SR-IOV) 

• Higher performance (packets per second), lower latency, and lower jitter. 

• 10 GigE 

– NSF Chameleon Cloud 

HPC Cloud - Combining HPC with Cloud 
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NSF Chameleon Cloud: A Powerful and Flexible 
Experimental Instrument 

• Large-scale instrument 
– Targeting Big Data, Big Compute, Big Instrument research 

– ~650 nodes (~14,500 cores), 5 PB disk over two sites, 2 sites connected with 100G network 

– Virtualization technology (e.g., SR-IOV, accelerators), systems, networking (InfiniBand), infrastructure-
level resource management, etc. 

• Reconfigurable instrument 
– Bare metal reconfiguration, operated as single instrument, graduated approach for ease-of-use 

• Connected instrument 
– Workload and Trace Archive 

– Partnerships with production clouds: CERN, OSDC, Rackspace, Google, and others 

– Partnerships with users 

• Complementary instrument 
– Complementing GENI, Grid’5000, and other testbeds 

• Sustainable instrument 
– Industry connections 

 
http://www.chameleoncloud.org/ 
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• Single Root I/O Virtualization (SR-IOV) is providing new opportunities 

to design HPC cloud with very little low overhead 

Single Root I/O Virtualization (SR-IOV) 

– Allows a single physical device, 

or a Physical Function (PF), to 

present itself as multiple 

virtual devices, or Virtual 

Functions (VFs) 

– Each VF can be dedicated to a 

single VM through PCI pass-

through 

– VFs are designed based on the 

existing non-virtualized PFs, no 

need for driver change 

– Work with 10/40 GigE and 

InfiniBand 
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• Support for SR-IOV 

– Inter-node Inter-VM communication 

• Locality-aware communication through IVSHMEM 

– Inter-VM Shared Memory (IVSHMEM) is a novel feature proposed 

for inter-VM communication, and offers shared memory backed 

communication for VMs within a given host  

– Intra-node Inter-VM communication 

• Building efficient HPC Cloud 

• Available publicly as MVAPICH2-Virt 2.1 Library 

MVAPICH2-Virt: High-Performance MPI Library over 
SR-IOV capable InfiniBand Clusters  
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• Redesign MVAPICH2 to make it 

virtual machine aware 

– SR-IOV shows near to native 

performance for inter-node point 

to point communication 

– IVSHMEM offers zero-copy access 

to data on shared memory of co-

resident VMs 

– Locality Detector: maintains 

the locality information of co-

resident virtual machines 

– Communication Coordinator: 

selects the communication 

channel (SR-IOV, IVSHMEM) 

adaptively 

 

 

Overview of MVAPICH2-Virt with SR-IOV and IVSHMEM 

Host Environment

Guest 1

Hypervisor PF Driver

Infiniband Adapter

Physical 
Function

user space

kernel space

MPI 
proc

PCI 
Device

VF 
Driver

Guest 2

user space

kernel space

MPI 
proc

PCI 
Device

VF 
Driver

Virtual 

Function

Virtual 

Function

/dev/shm/

IV-SHM

IV-Shmem Channel

SR-IOV Channel

J. Zhang, X. Lu, J. Jose, R. Shi, D. K. Panda. Can Inter-VM 

Shmem Benefit MPI Applications on SR-IOV based 

Virtualized InfiniBand Clusters? Euro-Par, 2014. 

J. Zhang, X. Lu, J. Jose, R. Shi, M. Li, D. K. Panda. High 

Performance MPI Library over SR-IOV Enabled InfiniBand 

Clusters. HiPC, 2014. 
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• OpenStack is one of the most popular 

open-source solutions to build clouds 

and manage virtual machines 

• Deployment with OpenStack 

– Supporting SR-IOV configuration 

– Supporting IVSHMEM configuration 

– Virtual Machine aware design of 

MVAPICH2 with SR-IOV 

• An efficient approach to build HPC 

Clouds with MVAPICH2-Virt and 

OpenStack 

MVAPICH2-Virt with SR-IOV and IVSHMEM over OpenStack 

J. Zhang, X. Lu, M. Arnold, D. K. Panda. MVAPICH2 over OpenStack with SR-IOV: An Efficient Approach to Build 

HPC Clouds. CCGrid, 2015. 
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Experimental Setup 
Cluster Nowlab Cloud Amazon EC2 

Instance 4 Core/VM 8 Core/VM 4 Core/VM 8 Core/VM 

Platform RHEL 6.5 Qemu+KVM HVM 
Slurm 14.11.8  

Amazon Linux 
(EL6) 
Xen HVM 
C3.xlarge [1] 
Instance  

Amazon Linux 
(EL6) 
Xen HVM 
C3.2xlarge [1] 

Instance  
 

CPU SandyBridge Intel(R) Xeon 
E5-2670 (2.6GHz)  

IvyBridge Intel(R) Xeon E5-
2680v2 (2.8GHz)  

RAM 6 GB 12 GB 7.5 GB 15 GB 

Interconnect FDR (56Gbps) InfiniBand 
Mellanox ConnectX-3 with 
SR-IOV [2] 

10 GigE with Intel ixgbevf SR-
IOV driver [2] 

[1] Amazon EC2 C3 instances:  compute-optimized instances, providing customers with the highest performing 

processors, good for HPC workloads 

[2] Nowlab Cloud is using InfiniBand FDR (56Gbps), while Amazon EC2 C3 instances are using 10 GigE. Both 

have SR-IOV support. 
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• Point-to-point 

– Two-sided and One-sided 

– Latency and Bandwidth 

– Intra-node and Inter-node [1] 

• Applications 

– NAS and Graph500 

 

Experiments Carried Out 

[1] Amazon EC2 does not support users to explicitly allocate VMs in one physical node so far.  We allocate 

multiple VMs in one logical group and compare the point-to-point performance for each pair of VMs. We see 

the VMs who have the lowest latency as located within one physical node (Intra-node), otherwise Inter-node. 
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• EC2 C3.2xlarge instances 

• Compared to SR-IOV-Def, up to 84% and 158% performance improvement on Lat & BW 

• Compared to Native, 3%-7% overhead for Lat, 3%-8% overhead for BW 

• Compared to EC2, up to 160X and 28X performance speedup on Lat & BW 

Intra-node Inter-VM pt2pt Latency Intra-node Inter-VM pt2pt Bandwidth  

Point-to-Point Performance – Latency & Bandwidth 
(Intra-node) 
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Point-to-Point Performance – Latency & Bandwidth 
(Inter-node) 
 

• EC2 C3.2xlarge instances 

• Similar performance with SR-IOV-Def 

• Compared to Native, 2%-8% overhead on Lat & BW for 8KB+ messages  

• Compared to EC2, up to 30X and 16X performance speedup on Lat & BW 
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• Compared to Native, 1-9% overhead for NAS 

• Compared to Native, 4-9% overhead for Graph500 
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• Performance and Memory scalability toward 500K-1M cores 
– Dynamically Connected Transport (DCT) service with Connect-IB  

• Hybrid programming (MPI + OpenSHMEM, MPI + UPC, MPI + CAF …) 
– Support for UPC++ 

• Enhanced Optimization for GPU Support and Accelerators 

• Taking advantage of advanced features 
– User Mode Memory Registration (UMR) 

– On-demand Paging 

• Enhanced Inter-node and Intra-node communication schemes for 
upcoming OmniPath enabled Knights Landing architectures  

• Extended RMA support (as in MPI 3.0) 

• Extended topology-aware collectives 

• Energy-aware point-to-point (one-sided and two-sided) and collectives 

• Extended Support for MPI Tools Interface (as in MPI 3.0) 

• Extended Checkpoint-Restart and migration support with SCR 

• Enhanced support with Virtualization 

 

 

 

MVAPICH2 – Plans for Exascale 
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Thank You! 

The High-Performance Big Data Project 
http://hibd.cse.ohio-state.edu/ 

59 

Network-Based Computing Laboratory 
http://nowlab.cse.ohio-state.edu/ 

The MVAPICH2 Project 
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• Many events 

– Workshop (ESPM2) 

– Tutorials (IB-HSE and Big Data) 

– Talks 

– Presentation-demo-discussion 

• Detailed events available from: 

– http://mvapich.cse.ohio-state.edu 

• Will  be at Ohio Supercomputer Center / OH-TECH Booth (#1209) 
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Multiple events from the Group at SC ‘15 
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