How Much of a Role Software Plays in Energy Efficiency?

Panel at E2SC '15

by

Dhabaleswar K. (DK) Panda

The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

Panel Questions and Answers

- 1) How is system software expected to contribute to energy efficiency optimization?
 - Significantly
- 2) What are the expectations for introspective systems? Will they become a reality within the next decade?
 - Quite high, Black box approach may not be the best
 - Yes
- 3) What role will application software have? What are reasonable interfaces between the application and system software?
 - Significant role
 - Varied levels of interfaces are possible MPI-T is one option

Reducing Power Consumption

- Power consumption is dominated by
 - CPU usage
 - Computation
 - Data movement
 - Memory access
 - Communication protocol
 - Network-level data transfer, etc.
- Two major approaches considered in the past to reduce power consumption in data movement
 - Determining slacks and use DVFS schemes
 - Scheduler-based solutions to have good power-performance trade offs at the systems-level
- Runtime-level and Network-level power-optimizations have not been addressed

E2SC-Panel (SC'15)

How to Reduce Power Consumption within a Runtime in an Intelligent Manner?

- MPI is a common runtime
- Primarily polling-driven for performance
 - Leads to increased power consumption
- Many times data has not reached the receivers and receivers are busy polling leading to un-necessary power consumption
- Can we have intelligent designs within runtime to avoid such un-necessary power consumption?
- Can we provide flexibility to have good powerperformance trade-off?

MVAPICH2-EA: Application Oblivious Energy-Aware-MPI (EAM)

- An energy efficient runtime that provides energy savings without application knowledge
- A white-box approach
- Automatically and transparently use the best energy lever
- Provides guarantees on maximum degradation with 5-41% savings at <= 5% degradation
- Pessimistic MPI applies energy reduction lever to each MPI call

Speedup (relative to default MPI) - 2048 processes

A Case for Application-Oblivious Energy-Efficient MPI Runtime A. Venkatesh , A. Vishnu , K. Hamidouche , N. Tallent ,

D. K. Panda , D. Kerbyson , and A. Hoise - Supercomputing '15, Nov 2015 , Best Student Paper Finalist, to be

presented in the Technical Papers Program, Tuesday 3:30-4:00pm (Room 18CD)

E2SC-Panel (SC'15)

Energy-Aware MVAPICH2 Library and OSU Energy Management Tool (OEMT)

- MVAPICH2-EA (Energy-Aware) MPI Library
 - Production-ready Energy-Aware MPI Library
 - New Energy-Efficient communication protocols for pt-pt and collective operations
 - Intelligently apply the appropriate energy saving techniques
 - Application oblivious energy saving
 - Released 08/28/15
- OEMT
 - A library utility to measure energy consumption for MPI applications
 - Works with all MPI runtimes
 - PRELOAD option for precompiled applications
 - Does not require ROOT permission:
 - A safe kernel module to read only a subset of MSRs
- Available from: <u>http://mvapich.cse.ohio-state.edu</u>

Reducing Power with Intelligent Protocol Selection?

- Transport protocol and energy-aware designs for blocking All-to-all collectives for IB networks
- Identify the correct set of transport protocols and algorithms that lead to best energy savings for different All-to-all communication patterns (640 processes)

- RC Protocol
 - Best performance at low to medium network load
 - Performance degrades as network load increases
 - Choose for applications / communication patterns with low to medium network load
- DC Protocol
 - Inherent serialization in DC causes
 - Performance overhead at low to medium network load
 - Good network behavior at high network load
 - Choose for applications / communication patterns with high network load
- RDMA-Power-Aware (R-P-Aware) + DC-E-UD
 - Significant energy savings
 - Able to save 1.7x (44%) energy
 - Improves communication performance
 - 8% improvement in latency
 - Significant reduction in network congestion
 - 8.8 times reduction in congestion

Impact of InfiniBand DC Transport Protocol on Energy Consumption of All-to-all Collective Algorithms; <u>H. Subramoni</u>, A. Venkatesh, <u>K. Hamidouche</u>, K. Tomko, and <u>D. K. Panda</u>; 23rd Annual Symposium on High Performance Interconnects, <u>(Hotl'15)</u>, Aug 2015 E2SC-Panel (SC'15)

Reducing Power Consumption at the Network-Level?

- In current HPC systems, networks are always `on' irrespective of data transmission is taking place or not
 - Switches, Adapters and Links consume power all the time
- Can we turn off unused links, adapters and switch ports?
- Can low-overhead schemes (like DVFS for processors) be designed for turning off/turning on network components?
- Such schemes can be used by the upper-level runtime and middleware to reduce network-level power consumption further ...