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Overview of the MVAPICH2 Project
• High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Started in 2001, First version available in 2002

– MVAPICH2-X (MPI + PGAS), Available since 2011

– Support for GPGPUs  (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014

– Support for Virtualization (MVAPICH2-Virt), Available since 2015

– Support for Energy-Awareness (MVAPICH2-EA), Available since 2015

– Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015

– Used by more than 2,690 organizations in 83 countries

– More than 402,000 (> 0.4 million) downloads from the OSU site directly

– Empowering many TOP500 clusters (Nov ‘16 ranking)

• 1st ranked 10,649,640-core cluster (Sunway TaihuLight) at  NSC, Wuxi, China

• 13th ranked 241,108-core cluster (Pleiades) at NASA

• 17th ranked 519,640-core cluster (Stampede) at  TACC

• 40th ranked 76,032-core cluster (Tsubame 2.5) at Tokyo Institute of Technology and many others

– Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)

– http://mvapich.cse.ohio-state.edu

• Empowering Top500 systems for over a decade

– System-X from Virginia Tech (3rd in Nov 2003, 2,200 processors, 12.25 TFlops) ->

Sunway TaihuLight at NSC, Wuxi, China (1st in Nov’16, 10,649,640 cores, 93 PFlops)

http://mvapich.cse.ohio-state.edu/
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MVAPICH2 Architecture

High Performance Parallel Programming Models

Message Passing Interface
(MPI)

PGAS
(UPC, OpenSHMEM, CAF, UPC++)

Hybrid --- MPI + X
(MPI + PGAS + OpenMP/Cilk)

High Performance and Scalable Communication Runtime

Diverse APIs and Mechanisms

Point-to-

point 

Primitives

Collectives 

Algorithms

Energy-

Awareness

Remote 

Memory 

Access

I/O and

File Systems

Fault

Tolerance
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& Analysis

Support for Modern Networking Technology
(InfiniBand, iWARP, RoCE, OmniPath)

Support for Modern Multi-/Many-core Architectures
(Intel-Xeon, OpenPower, Xeon-Phi (MIC, KNL*), NVIDIA GPGPU)

Transport Protocols Modern Features

RC XRC UD DC UMR ODP*
SR-

IOV

Multi 

Rail

Transport Mechanisms

Shared 

Memory
CMA IVSHMEM

Modern Features

MCDRAM* NVLink* CAPI*

* Upcoming
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MVAPICH2 Software Family 
High-Performance Parallel Programming Libraries

MVAPICH2 Support for InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE

MVAPICH2-X Advanced MPI features, OSU INAM, PGAS (OpenSHMEM, UPC, UPC++, and CAF), and 
MPI+PGAS programming models with unified communication runtime

MVAPICH2-GDR Optimized MPI for clusters with NVIDIA GPUs

MVAPICH2-Virt High-performance and scalable MPI for hypervisor and container based HPC cloud

MVAPICH2-EA Energy aware and High-performance MPI

MVAPICH2-MIC Optimized MPI for clusters with Intel KNC

Microbenchmarks

OMB Microbenchmarks suite to evaluate MPI and PGAS (OpenSHMEM, UPC, and UPC++) 
libraries for CPUs and GPUs

Tools

OSU INAM Network monitoring, profiling, and analysis for clusters with MPI and scheduler 
integration

OEMT Utility to measure the energy consumption of MPI applications
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• MVAPICH2-GPU with GPUDirect-RDMA (GDR) 

• What’s new with MVAPICH2-GDR
• Efficient MPI-3 Non-Blocking Collective support 

• Maximal overlap in MPI Datatype Processing

• Efficient Support for Managed Memory

• Initial support for GPUDirect Async feature

• Streaming Support with IB Multicast and GDR 

• High-Performance Deep Learning (HiDL) with MVAPICH2-GDR 

• Conclusions

Outline
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Node 0 Node 1
1. Intra-GPU
2. Intra-Socket GPU-GPU
3. Inter-Socket GPU-GPU
4. Inter-Node GPU-GPU
5. Intra-Socket GPU-Host

7. Inter-Node GPU-Host
6. Inter-Socket GPU-Host

Memory buffers

8. Inter-Node GPU-GPU with IB adapter  on remote socket

and more . . .
• For each path different schemes: Shared_mem, IPC, GPUDirect RDMA, pipeline …
• Critical for runtimes to optimize data movement while hiding the complexity

• Connected as PCIe devices – Flexibility but Complexity

Optimizing MPI Data Movement on GPU Clusters
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At Sender:

At Receiver:

MPI_Recv(r_devbuf, size, …);

inside

MVAPICH2

• Standard MPI interfaces used for unified data movement

• Takes advantage of Unified Virtual Addressing (>= CUDA 4.0) 

• Overlaps data movement from GPU with RDMA transfers 

High Performance and High Productivity

MPI_Send(s_devbuf, size, …);

GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GPU 
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CUDA-Aware MPI: MVAPICH2-GDR 1.8-2.2 Releases
• Support for MPI communication from NVIDIA GPU device memory

• High performance RDMA-based inter-node point-to-point communication 
(GPU-GPU, GPU-Host and Host-GPU)

• High performance intra-node point-to-point communication for multi-GPU 
adapters/node (GPU-GPU, GPU-Host and Host-GPU)

• Taking advantage of CUDA IPC (available since CUDA 4.1) in intra-node 
communication for multiple GPU adapters/node

• Optimized and tuned collectives for GPU device buffers

• MPI datatype support for point-to-point and collective communication from 
GPU device buffers

• Unified memory
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• MVAPICH2-2.2 with GDR support can be downloaded from 

https://mvapich.cse.ohio-state.edu/download/mvapich2gdr/

• System software requirements

• Mellanox OFED 2.1 or later

• NVIDIA Driver 331.20 or later

• NVIDIA CUDA Toolkit 7.0 or later

• Plugin for GPUDirect RDMA

http://www.mellanox.com/page/products_dyn?product_family=116

• Strongly recommended

• GDRCOPY module from NVIDIA

https://github.com/NVIDIA/gdrcopy

• Contact MVAPICH help list with any questions related to the package

mvapich-help@cse.ohio-state.edu

Using MVAPICH2-GPUDirect Version

https://mvapich.cse.ohio-state.edu/download/mvapich2gdr/
http://www.mellanox.com/page/products_dyn?product_family=116
https://github.com/NVIDIA/gdrcopy
mailto:mvapich-help@cse.ohio-state.edu
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• Platform: Wilkes (Intel Ivy Bridge + NVIDIA Tesla K20c + Mellanox Connect-IB)

• HoomdBlue Version 1.0.5 

• GDRCOPY enabled: MV2_USE_CUDA=1 MV2_IBA_HCA=mlx5_0 MV2_IBA_EAGER_THRESHOLD=32768 

MV2_VBUF_TOTAL_SIZE=32768 MV2_USE_GPUDIRECT_LOOPBACK_LIMIT=32768 

MV2_USE_GPUDIRECT_GDRCOPY=1 MV2_USE_GPUDIRECT_GDRCOPY_LIMIT=16384

Application-Level Evaluation (HOOMD-blue)
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mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
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Full and Efficient MPI-3 RMA Support  
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• MVAPICH2-GPU with GPUDirect-RDMA (GDR) 

• What’s new with MVAPICH2-GDR
• Efficient MPI-3 Non-Blocking Collective support 

• Maximal overlap in MPI Datatype Processing

• Efficient Support for Managed Memory

• Initial support for GPUDirect Async feature

• Streaming Support with IB Multicast and GDR 

• High-Performance Deep Learning (HiDL) with MVAPICH2-GDR 

• Conclusions

Outline
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Available since MVAPICH2-GDR 2.2b

CUDA-Aware Non-Blocking Collectives

A. Venkatesh, K. Hamidouche, H. Subramoni, and D. K. Panda, Offloaded GPU 

Collectives using CORE-Direct and CUDA Capabilities on IB Clusters, HIPC, 

2015
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• Multi-dimensional data

• Row based organization

• Contiguous on one dimension 

• Non-contiguous on other dimensions

• Halo data exchange

• Duplicate the boundary

• Exchange the boundary in each 
iteration

Halo data exchange

Non-contiguous Data Exchange
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MPI Datatype Processing (Computation Optimization )

• Comprehensive support 

• Targeted kernels  for regular datatypes  - vector, subarray, indexed_block

• Generic kernels for all other irregular datatypes

• Separate non-blocking stream for kernels launched by MPI library 

• Avoids stream conflicts with application kernels  

• Flexible set of parameters for users to tune kernels

• Vector 

• MV2_CUDA_KERNEL_VECTOR_TIDBLK_SIZE

• MV2_CUDA_KERNEL_VECTOR_YSIZE

• Subarray 

• MV2_CUDA_KERNEL_SUBARR_TIDBLK_SIZE 

• MV2_CUDA_KERNEL_SUBARR_XDIM

• MV2_CUDA_KERNEL_SUBARR_YDIM 

• MV2_CUDA_KERNEL_SUBARR_ZDIM 

• Indexed_block

• MV2_CUDA_KERNEL_IDXBLK_XDIM
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Application-Level Evaluation (Cosmo) and Weather Forecasting in Switzerland
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• 2X improvement on 32 GPUs nodes
• 30% improvement on 96 GPU nodes (8 GPUs/node) 

C. Chu, K. Hamidouche, A. Venkatesh, D. Banerjee , H. Subramoni, and D. K. Panda, Exploiting Maximal Overlap for Non-Contiguous Data 

Movement Processing on Modern GPU-enabled Systems, IPDPS’16

On-going collaboration with CSCS and MeteoSwiss (Switzerland) in co-designing MV2-GDR and Cosmo Application

Cosmo model: http://www2.cosmo-model.org/content

/tasks/operational/meteoSwiss/

mailto:panda@cse.ohio-state.edu
http://www2.cosmo-model.org/content
mailto:panda@cse.ohio-state.edu
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• MVAPICH2-GPU with GPUDirect-RDMA (GDR) 

• What’s new with MVAPICH2-GDR
• Efficient MPI-3 Non-Blocking Collective support 

• Maximal overlap in MPI Datatype Processing

• Efficient Support for Managed Memory

• Initial support for GPUDirect Async feature

• Streaming Support with IB Multicast and GDR 

• High-Performance Deep Learning (HiDL) with MVAPICH2-GDR 

• Conclusions

Outline
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Initial (Basic) Support for GPU Unified Memory

● CUDA 6.0 NVIDIA introduced CUDA Managed (or Unified) 

memory allowing a common memory allocation for GPU or 

CPU through cudaMallocManaged() call

● Significant productivity benefits due to abstraction of 

explicit allocation and cudaMemcpy()

● Extended MVAPICH2 to perform communications directly 

from managed buffers (Available since MVAPICH2-GDR 2.2b)

● OSU Micro-benchmarks extended to evaluate the 

performance of point-to-point and collective 

communications using managed buffers 

● Available since OMB 5.2

D. S. Banerjee, K Hamidouche, and D. K Panda, Designing High Performance 
Communication Runtime for GPUManaged Memory: Early Experiences, GPGPU-9 
Workshop, held in conjunction with PPoPP ‘16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 4 8 16 32 64 128 256 1K 4K 8K 16K

H
al

o
 E

xc
h

an
ge

 T
im

e
 (

m
s)

Total Dimension Size (Bytes)

2D Stencil Performance for Halowidth=1

Device

Managed



SC 2016 21Network Based Computing Laboratory

Enhanced Support for Intra-node Managed Memory 

● CUDA Managed => no memory pin down 

● No IPC support for intra-node communication 

● No GDR support for inter-node communication

● Initial and basic support in MVAPICH2-GDR 

● For both intra- and inter-nodes use “pipeline 

through” host memory 

● Enhance intra-node managed memory to use IPC

● Double buffering pair-wise IPC-based scheme 

● Brings IPC performance to Managed memory 

● High performance and high productivity

● 2.5 X improvement in bandwidth

● Available in MVAPICH2-GDR 2.2 
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• MVAPICH2-GPU with GPUDirect-RDMA (GDR) 

• What’s new with MVAPICH2-GDR
• Efficient MPI-3 Non-Blocking Collective support 

• Maximal overlap in MPI Datatype Processing

• Efficient Support for Managed Memory

• Initial support for GPUDirect Async feature

• Streaming Support with IB Multicast and GDR 

• High-Performance Deep Learning (HiDL) with MVAPICH2-GDR 

• Conclusions

Outline
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Overview of GPUDirect aSync (GDS) Feature: 
Current MPI+CUDA interaction 

CUDA_Kernel_a<<<>>>(A…., stream1)
cudaStreamSynchronize(stream1)
MPI_ISend (A,…., req1)
MPI_Wait (req1)
CUDA_Kernel_b<<<>>>(B…., stream1)

GPU CPU HCA

100% CPU control 
• Limits the throughput of a GPU 
• Limits the asynchronous progress 
• Wastes CPU cycles 
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MVAPICH2-GDS: Decouple GPU Control Flow from CPU

CUDA_Kernel_a<<<>>>(A…., stream1)
MPI_ISend (A,…., req1, stream1)
MPI_Wait (req1, stream1) (non-blocking from CPU)
CUDA_Kernel_b<<<>>>(B…., stream1)

GPU CPU HCA

CPU offloads the compute, communication and 
synchronization tasks to GPU  
• CPU is out of the critical path 
• Tight interaction between GPU and HCA 
• Hides the overhead of kernel launch  
• Requires MPI semantics extensions 

• All operations are asynchronous from CPU 
• Extends MPI semantics with Stream-based semantics 

Kernel Launch 
overhead hided
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Latency oriented: Send+kernel and Recv+kernel
MVAPICH2-GDS: Preliminary Results 
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Throughput Oriented: back-to-back 

• Latency Oriented: Able to hide the kernel launch overhead

– 25% improvement at 256 Bytes compared to default behavior 

• Throughput Oriented: Asynchronously to offload queue the Communication and computation tasks

– 14% improvement at 1KB message size 

– Requires some tuning and expect better performance for Application with different Kernels 

Intel SandyBridge, NVIDIA K20 and Mellanox FDR HCA 
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• MVAPICH2-GPU with GPUDirect-RDMA (GDR) 

• What’s new with MVAPICH2-GDR
• Efficient MPI-3 Non-Blocking Collective support 

• Maximal overlap in MPI Datatype Processing

• Efficient Support for Managed Memory

• Initial support for GPUDirect Async feature

• Streaming Support with IB Multicast and GDR 

• High-Performance Deep Learning (HiDL) with MVAPICH2-GDR 

• Conclusions

Outline
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• Examples - surveillance, habitat 

monitoring, proton computed 

tomography (pCT), etc..

• Require efficient transport of data 

from/to distributed sources/sinks

• Sensitive to latency and throughput 

metrics 

• Require HPC resources to efficiently carry 

out compute-intensive tasks

Streaming Applications

Src: http://www.symmetrymagazine.org/article/april-2012/proton-beam-on
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• Streaming applications 

on HPC systems

1. Communication (MPI)

• Broadcast-type operations

2. Computation (CUDA)

• Multiple GPU nodes as 

workers

Motivation
Data Source

SenderHPC resources for 
real-time analytics

Real-time streaming

Worker
CPU

GPU

GPU

Worker
CPU

GPU

GPU

Worker
CPU

GPU

GPU

Worker
CPU

GPU

GPU

Worker
CPU

GPU

GPU

Data streaming-like broadcast 
operations
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IB Multicast Example
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• Can we design a GPU broadcast mechanism that can deliver low latency and 
high throughput for streaming applications?

• Can we combine GDR and MCAST features to

• Achieve the best performance 

• Free-up the Host-Device PCIe bandwidth for application needs 

• Can such design be extended to support heterogeneous configuration (host-to-
device)?

• Can we design and efficient MCAST based broadcast for multi-GPU systems?

• Can we design an efficient reliability support on top of the UD-based MCAST 
broadcast?

• How can we demonstrate such benefits at benchmark and applications level?

Problem Statement
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•Handling efficient broadcast on multi-GPU node systems

• C.-H. Chu, K. Hamidouche, H. Subramoni, A. Venkatesh, B. Elton, and D. K. Panda.
“Designing High Performance Heterogeneous Broadcast for Streaming Applications on
GPU Clusters, “ SBAC-PAD’16, Oct 2016.

• Providing reliability support

• C.-H. Chu, K. Hamidouche, H. Subramoni, A. Venkatesh, B. Elton, and D. K. Panda.
“Efficient Reliability Support for Hardware Multicast-based Broadcast in GPU-enabled
Streaming Applications,“ in COMHPC 2016 (SC Workshop), Nov 2016.

• Will be presented on Friday (11/18/16) at 9:15am, Room #355-D

Two Major Solutions (So far)
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• Mimic the behavior of streaming applications @ CSCS cluster, 88 GPUs, 8 

NVIDIA K80 GPUs per node
• Broadcast operations overlapped with application level Host-Device transfers 

– Main thread performing MCAST (streaming)

– Helper thread starting CUDA kernels and performing Async H-D copies

Benefits of the Availability of Host-Device PCI Resources
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• MVAPICH2-GPU with GPUDirect-RDMA (GDR) 

• What’s new with MVAPICH2-GDR
• Efficient MPI-3 Non-Blocking Collective support 

• Maximal overlap in MPI Datatype Processing

• Efficient Support for Managed Memory

• Initial support for GPUDirect Async feature

• Streaming Support with IB Multicast and GDR 

• High-Performance Deep Learning (HiDL) with MVAPICH2-GDR

• Conclusions

Outline
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• Deep Learning frameworks are a different game 

altogether

– Unusually large message sizes (order of 

megabytes)

– Most communication based on GPU buffers

• How to address these newer requirements?

– GPU-specific Communication Libraries (NCCL)

• NVidia's NCCL library provides inter-GPU 

communication

– CUDA-Aware MPI (MVAPICH2-GDR)

• Provides support for GPU-based communication

• Can we exploit CUDA-Aware MPI and NCCL to 

support Deep Learning applications?

Deep Learning: New Challenges for MPI Runtimes
1

32

4

Internode	Comm.	(Knomial)

1 2

CPU

PLX

3 4

PLX

Intranode Comm.
(NCCL	Ring)

Ring	Direction	

Hierarchical Communication (Knomial + NCCL ring)

Efficient Large Message Broadcast using NCCL and CUDA-Aware 
MPI for Deep Learning, A. Awan, K. Hamidouche, A. Venkatesh, 
and D. K. Panda, The 23rd European MPI Users' Group Meeting 
(EuroMPI 16), Sep 2016 [Best Paper Runner-Up]
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• Can we optimize MVAPICH2-GDR to 

efficiently support DL frameworks?

– We need to design large-scale 

reductions using CUDA-Awareness

– GPU performs reduction using 

kernels

– Overlap of computation and 

communication

– Hierarchical Designs 

• Proposed designs achieve 2.5x 

speedup over MVAPICH2-GDR and 

133x over OpenMPI

Efficient Reduce: MVAPICH2-GDR
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• Caffe : A flexible and layered Deep Learning framework.

• Benefits and Weaknesses

– Multi-GPU Training within a single node

– Performance degradation for GPUs across different 

sockets 

– Limited Scale-out

• OSU-Caffe: MPI-based Parallel Training 

– Enable Scale-up (within a node) and Scale-out (across 

multi-GPU nodes)

– Scale-out on 64 GPUs for training CIFAR-10 network on 

CIFAR-10 dataset

– Scale-out on 128 GPUs for training GoogLeNet network on 

ImageNet dataset

OSU-Caffe: Scalable Deep Learning
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• MVAPICH2-GPU with GPUDirect-RDMA (GDR) 

• What’s new with MVAPICH2-GDR
• Efficient MPI-3 Non-Blocking Collective support 

• Maximal overlap in MPI Datatype Processing

• Efficient Support for Managed Memory

• Initial support for GPUDirect Async feature

• Streaming Support with IB Multicast and GDR 

• High-Performance Deep Learning (HiDL) with MVAPICH2-GDR 

• Conclusions

Outline
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• MVAPICH2 optimizes MPI communication on InfiniBand clusters with GPUs 

• Provides optimized designs for point-to-point two-sided and one-sided 

communication, datatype processing and collective operations 

• Takes advantage of CUDA features like IPC and GPUDirect RDMA families 

• Allows flexible solutions for streaming applications with GPUs

• HiDL: Accelerating your Deep Learning framework on HPC systems 

• Tight interaction with MVAPICH2-GDR to boost the performance on GPU cluster 

• Scales-out to multi-GPU nodes 

Conclusions
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panda@cse.ohio-state.edu

Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The MVAPICH2 Project
http://mvapich.cse.ohio-state.edu/

mailto:panda@cse.ohio-state.edu
http://nowlab.cse.ohio-state.edu/

