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Drivers of Modern HPC Cluster Architectures

Tianhe – 2 Titan Stampede Tianhe – 1A 

• Multi-core/many-core technologies

• Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE)

• Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), NVMe-SSD

• Accelerators (NVIDIA GPGPUs and Intel Xeon Phi)

Accelerators / Coprocessors 
high compute density, high 

performance/watt
>1 TFlop DP on a chip 

High Performance Interconnects -
InfiniBand

<1usec latency, 100Gbps Bandwidth>Multi-core Processors SSD, NVMe-SSD, NVRAM
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• Scientific Computing

– Message Passing Interface (MPI), including MPI + OpenMP, is the Dominant 

Programming Model 

– Many discussions towards Partitioned Global Address Space (PGAS) 

• UPC, OpenSHMEM, CAF, UPC++ etc.

– Hybrid Programming: MPI + PGAS (OpenSHMEM, UPC) 

• Deep Learning

– Caffe, CNTK, TensorFlow, and many more

• Big Data/Enterprise/Commercial Computing

– Focuses on large data and data analysis

– Spark and Hadoop (HDFS, HBase, MapReduce) 

– Memcached is also used for Web 2.0 

Three Major Computing Categories



HPC-Connection (SC ‘16) 4Network Based Computing Laboratory

Designing Communication Middleware for Multi-Petaflop 
and Exaflop Systems: Challenges 

Programming Models
MPI, PGAS (UPC, Global Arrays, OpenSHMEM), CUDA, OpenMP, 

OpenACC, Cilk, Hadoop (MapReduce), Spark (RDD, DAG), etc.

Application Kernels/Applications

Networking Technologies
(InfiniBand, 40/100GigE, 

Aries, and OmniPath)

Multi/Many-core
Architectures

Accelerators
(NVIDIA and MIC)

Middleware

Co-Design 

Opportunities 

and 

Challenges 

across Various 

Layers

Performance

Scalability

Fault-

Resilience

Communication Library or Runtime for Programming Models

Point-to-point 

Communication

Collective 

Communication

Energy-

Awareness

Synchronization 

and Locks

I/O and

File Systems

Fault

Tolerance
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• Scalability for million to billion processors
– Support for highly-efficient inter-node and intra-node communication (both two-sided and one-sided)

– Scalable job start-up

• Scalable Collective communication
– Offload

– Non-blocking

– Topology-aware

• Balancing intra-node and inter-node communication for next generation nodes (128-1024 cores)
– Multiple end-points per node

• Support for efficient multi-threading

• Integrated Support for GPGPUs and Accelerators

• Fault-tolerance/resiliency

• QoS support for communication and I/O

• Support for Hybrid MPI+PGAS programming (MPI + OpenMP, MPI + UPC, MPI + OpenSHMEM, 
MPI+UPC++, CAF, …)

• Virtualization 

• Energy-Awareness

Broad Challenges in Designing  Communication Middleware for (MPI+X) at 
Exascale
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• Extreme Low Memory Footprint
– Memory per core continues to decrease

• D-L-A Framework

– Discover

• Overall network topology (fat-tree, 3D, …), Network topology for processes for a given job

• Node architecture, Health of network and node

– Learn

• Impact on performance and scalability

• Potential for failure

– Adapt

• Internal protocols and algorithms

• Process mapping

• Fault-tolerance solutions 

– Low overhead techniques while delivering performance, scalability and fault-tolerance

Additional Challenges for Designing Exascale Software Libraries 
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Overview of the MVAPICH2 Project
• High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Started in 2001, First version available in 2002

– MVAPICH2-X (MPI + PGAS), Available since 2011

– Support for GPGPUs  (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014

– Support for Virtualization (MVAPICH2-Virt), Available since 2015

– Support for Energy-Awareness (MVAPICH2-EA), Available since 2015

– Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015

– Used by more than 2,690 organizations in 83 countries

– More than 402,000 (> 0.4 million) downloads from the OSU site directly

– Empowering many TOP500 clusters (Nov ‘16 ranking)

• 1st ranked 10,649,640-core cluster (Sunway TaihuLight) at  NSC, Wuxi, China

• 13th ranked 241,108-core cluster (Pleiades) at NASA

• 17th ranked 519,640-core cluster (Stampede) at  TACC

• 40th ranked 76,032-core cluster (Tsubame 2.5) at Tokyo Institute of Technology and many others

– Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)

– http://mvapich.cse.ohio-state.edu

• Empowering Top500 systems for over a decade

– System-X from Virginia Tech (3rd in Nov 2003, 2,200 processors, 12.25 TFlops) ->

Sunway TaihuLight at NSC, Wuxi, China (1st in Nov’16, 10,649,640 cores, 93 PFlops)

http://mvapich.cse.ohio-state.edu/
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Architecture of MVAPICH2 Software Family

High Performance Parallel Programming Models

Message Passing Interface
(MPI)

PGAS
(UPC, OpenSHMEM, CAF, UPC++)

Hybrid --- MPI + X
(MPI + PGAS + OpenMP/Cilk)

High Performance and Scalable Communication Runtime
Diverse APIs and Mechanisms

Point-to-

point 

Primitives

Collectives 

Algorithms

Energy-

Awareness

Remote 

Memory 

Access

I/O and

File Systems

Fault

Tolerance
Virtualization

Active 

Messages
Job Startup

Introspection 

& Analysis

Support for Modern Networking Technology
(InfiniBand, iWARP, RoCE, Omni-Path)

Support for Modern Multi-/Many-core Architectures
(Intel-Xeon, OpenPower, Xeon-Phi (MIC, KNL), NVIDIA GPGPU)

Transport Protocols Modern Features

RC XRC UD DC UMR ODP
SR-

IOV

Multi 

Rail

Transport Mechanisms

Shared 

Memory
CMA IVSHMEM

Modern Features

MCDRAM* NVLink* CAPI*

* Upcoming
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MVAPICH2 Software Family 
High-Performance Parallel Programming Libraries

MVAPICH2 Support for InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE

MVAPICH2-X Advanced MPI features, OSU INAM, PGAS (OpenSHMEM, UPC, UPC++, and CAF), and 
MPI+PGAS programming models with unified communication runtime

MVAPICH2-GDR Optimized MPI for clusters with NVIDIA GPUs

MVAPICH2-Virt High-performance and scalable MPI for hypervisor and container based HPC cloud

MVAPICH2-EA Energy aware and High-performance MPI

MVAPICH2-MIC Optimized MPI for clusters with Intel KNC

Microbenchmarks

OMB Microbenchmarks suite to evaluate MPI and PGAS (OpenSHMEM, UPC, and UPC++) 
libraries for CPUs and GPUs

Tools

OSU INAM Network monitoring, profiling, and analysis for clusters with MPI and scheduler 
integration

OEMT Utility to measure the energy consumption of MPI applications



HPC-Connection (SC ‘16) 11Network Based Computing Laboratory

• Scalability for million to billion processors
– Support for highly-efficient inter-node and intra-node communication

– Dynamic and Adaptive Tag Matching

• Unified Runtime for Hybrid MPI+PGAS programming (MPI + OpenSHMEM, MPI + 
UPC, CAF, UPC++, …) 

• Integrated Support for GPGPUs

• Accelerating Graph Processing (Mizan) with MPI-3 RMA

• Optimized MVAPICH2 for KNL and Omni-Path

Overview of A Few Challenges being Addressed by the MVAPICH2 
Project for Exascale
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One-way Latency: MPI over IB with MVAPICH2
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TrueScale-QDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB switch
ConnectX-3-FDR - 2.8 GHz Deca-core (IvyBridge) Intel PCI Gen3 with IB switch

ConnectIB-Dual FDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB switch
ConnectX-4-EDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 IB switch

Omni-Path - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with Omni-Path switch

Bandwidth: MPI over IB with MVAPICH2
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• Applications no longer need to pin down underlying physical pages

• Memory Region (MR) are NEVER pinned by the OS 

• Paged in by the HCA when needed 

• Paged out by the OS when reclaimed 

• ODP can be divided into two classes 

– Explicit ODP

• Applications still register memory buffers for 

communication, but this operation is used to define access 

control for IO rather than pin-down the pages

– Implicit ODP

• Applications are provided with a special memory key that 

represents their complete address space, does not need to 

register any virtual address range

• Advantages 

• Simplifies programming

• Unlimited MR sizes

• Physical memory optimization 

On-Demand Paging (ODP)
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Applications (64 Processes)

Pin-down

ODP

M. Li, K. Hamidouche, X. Lu, H. Subramoni, J. Zhang, and D. K. Panda, 

“Designing MPI Library with On-Demand Paging (ODP) of InfiniBand: 

Challenges and Benefits”, SC 2016.

Wednesday 11/16/2016 @ 11:00 – 11:30 AM  in Room 355-D
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Dynamic and Adaptive Tag Matching

Normalized Total Tag Matching Time at 512 Processes
Normalized to Default (Lower is Better)

Normalized Memory Overhead per Process at 512 Processes
Compared to Default (Lower is Better)

Adaptive and Dynamic Design for MPI Tag Matching; M. Bayatpour, H. Subramoni, S. Chakraborty, and D. K. Panda; IEEE Cluster 2016. [Best Paper Nominee]

C
h

al
le

n
ge

Tag matching is a significant 
overhead for receivers

Existing Solutions are

- Static and do not adapt 
dynamically to 
communication pattern

- Do not consider memory 
overhead

So
lu

ti
o

n A new tag matching design

- Dynamically adapt to 
communication patterns

- Use different strategies for 
different ranks 

- Decisions are based on the 
number of request object 
that must be traversed 
before hitting on the 
required one

R
es

u
lt

s Better performance than 
other state-of-the art tag-
matching schemes

Minimum memory 
consumption

Will be available in future 
MVAPICH2 releases



HPC-Connection (SC ‘16) 17Network Based Computing Laboratory

• Scalability for million to billion processors

• Unified Runtime for Hybrid MPI+PGAS programming (MPI + OpenSHMEM, MPI + 
UPC, CAF, UPC++, …) 

• Integrated Support for GPGPUs

• Accelerating Graph Processing (Mizan) with MPI-3 RMA

• Optimized MVAPICH2 for KNL and Omni-Path

Overview of A Few Challenges being Addressed by the MVAPICH2 
Project for Exascale
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MVAPICH2-X for Hybrid MPI + PGAS Applications

• Current Model – Separate Runtimes for OpenSHMEM/UPC/UPC++/CAF and MPI
– Possible deadlock if both runtimes are not  progressed

– Consumes more network resource

• Unified communication runtime for MPI, UPC, UPC++, OpenSHMEM, CAF

– Available with since 2012 (starting with MVAPICH2-X 1.9) 

– http://mvapich.cse.ohio-state.edu

http://mvapich.cse.ohio-state.edu/overview/mvapich2x
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UPC++ Support in MVAPICH2-X

MPI + {UPC++} Application

GASNet Interfaces

UPC++ 
Interface

Network

Conduit (MPI)

MVAPICH2-X
Unified Communication 

Runtime (UCR)

MPI + {UPC++} Application

UPC++ 
Runtime

MPI 
Interfaces

• Full and native support for hybrid MPI + UPC++ applications

• Better performance compared to IBV and MPI conduits

• OSU Micro-benchmarks (OMB) support for UPC++

• Available since MVAPICH2-X (2.2rc1)
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Application Level Performance with Graph500 and Sort
Graph500 Execution Time

J. Jose, S. Potluri, K. Tomko and D. K. Panda, Designing Scalable Graph500 Benchmark with Hybrid MPI+OpenSHMEM Programming Models, 

International Supercomputing Conference (ISC’13), June 2013

J. Jose, K. Kandalla, M. Luo and D. K. Panda, Supporting Hybrid MPI and OpenSHMEM over InfiniBand: Design and Performance Evaluation, 

Int'l Conference on Parallel Processing (ICPP '12), September 2012

0
5

10
15
20
25
30
35

4K 8K 16K

Ti
m

e
 (

s)

No. of Processes

MPI-Simple

MPI-CSC

MPI-CSR

Hybrid (MPI+OpenSHMEM)
13X

7.6X

• Performance of Hybrid (MPI+ OpenSHMEM) Graph500 Design

• 8,192 processes
- 2.4X improvement over MPI-CSR

- 7.6X improvement over MPI-Simple

• 16,384 processes
- 1.5X improvement over MPI-CSR

- 13X improvement over MPI-Simple

J. Jose, K. Kandalla, S. Potluri, J. Zhang and D. K. Panda, Optimizing Collective Communication in OpenSHMEM, Int'l Conference on Partitioned 

Global Address Space Programming Models (PGAS '13), October 2013.

Sort Execution Time

0

500

1000

1500

2000

2500

3000

500GB-512 1TB-1K 2TB-2K 4TB-4K

Ti
m

e
 (

se
co

n
d

s)

Input Data - No. of Processes

MPI Hybrid

51%

• Performance of Hybrid (MPI+OpenSHMEM) Sort 
Application

• 4,096 processes, 4 TB Input Size
- MPI – 2408 sec; 0.16 TB/min

- Hybrid – 1172 sec; 0.36 TB/min

- 51% improvement over MPI-design
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• Scalability for million to billion processors

• Unified Runtime for Hybrid MPI+PGAS programming (MPI + OpenSHMEM, MPI + 
UPC, CAF, UPC++, …) 

• Integrated Support for GPGPUs
– CUDA-aware MPI

– GPUDirect RDMA (GDR) Support

– Control Flow Decoupling through GPUDirect Async

• Accelerating Graph Processing (Mizan) with MPI-3 RMA

• Optimized MVAPICH2 for KNL and Omni-Path

Overview of A Few Challenges being Addressed by the MVAPICH2 
Project for Exascale
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At Sender:

At Receiver:

MPI_Recv(r_devbuf, size, …);

inside

MVAPICH2

• Standard MPI interfaces used for unified data movement

• Takes advantage of Unified Virtual Addressing (>= CUDA 4.0) 

• Overlaps data movement from GPU with RDMA transfers 

High Performance and High Productivity

MPI_Send(s_devbuf, size, …);

GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GPU 
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CUDA-Aware MPI: MVAPICH2-GDR 1.8-2.2 Releases
• Support for MPI communication from NVIDIA GPU device memory

• High performance RDMA-based inter-node point-to-point communication 
(GPU-GPU, GPU-Host and Host-GPU)

• High performance intra-node point-to-point communication for multi-GPU 
adapters/node (GPU-GPU, GPU-Host and Host-GPU)

• Taking advantage of CUDA IPC (available since CUDA 4.1) in intra-node 
communication for multiple GPU adapters/node

• Optimized and tuned collectives for GPU device buffers

• MPI datatype support for point-to-point and collective communication from 
GPU device buffers

• Unified memory
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• Platform: Wilkes (Intel Ivy Bridge + NVIDIA Tesla K20c + Mellanox Connect-IB)

• HoomdBlue Version 1.0.5 

• GDRCOPY enabled: MV2_USE_CUDA=1 MV2_IBA_HCA=mlx5_0 MV2_IBA_EAGER_THRESHOLD=32768 

MV2_VBUF_TOTAL_SIZE=32768 MV2_USE_GPUDIRECT_LOOPBACK_LIMIT=32768 

MV2_USE_GPUDIRECT_GDRCOPY=1 MV2_USE_GPUDIRECT_GDRCOPY_LIMIT=16384

Application-Level Evaluation (HOOMD-blue)
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mailto:panda@cse.ohio-state.edu
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Application-Level Evaluation (Cosmo) and Weather Forecasting in Switzerland
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• 2X improvement on 32 GPUs nodes
• 30% improvement on 96 GPU nodes (8 GPUs/node) 

C. Chu, K. Hamidouche, A. Venkatesh, D. Banerjee , H. Subramoni, and D. K. Panda, Exploiting Maximal Overlap for Non-Contiguous Data 

Movement Processing on Modern GPU-enabled Systems, IPDPS’16

On-going collaboration with CSCS and MeteoSwiss (Switzerland) in co-designing MV2-GDR and Cosmo Application

Cosmo model: http://www2.cosmo-model.org/content

/tasks/operational/meteoSwiss/

mailto:panda@cse.ohio-state.edu
http://www2.cosmo-model.org/content
mailto:panda@cse.ohio-state.edu
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Latency oriented: Send+kernel and Recv+kernel

MVAPICH2-GDS: Preliminary Results 
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Throughput Oriented: back-to-back 

• Latency Oriented: Able to hide the kernel launch overhead

– 25% improvement at 256 Bytes compared to default behavior 

• Throughput Oriented: Asynchronously to offload queue the Communication and computation tasks

– 14% improvement at 1KB message size 

Intel Sandy Bridge, NVIDIA K20 and Mellanox FDR HCA

Will be available in a public release soon 
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• Scalability for million to billion processors

• Unified Runtime for Hybrid MPI+PGAS programming (MPI + OpenSHMEM, MPI + 
UPC, CAF, UPC++, …) 

• Integrated Support for GPGPUs

• Accelerating Graph Processing (Mizan) with MPI-3 RMA

• Optimized MVAPICH2 for KNL and Omni-Path

Overview of A Few Challenges being Addressed by the MVAPICH2 
Project for Exascale
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Mizan-RMA: Accelerating Graph Processing Framework

• Mizan framework is available from:
• https://thegraphsblog.wordpress.

com/the-graph-blog/mizan/
• Accelerate communication with MPI 

one-sided programming model (RMA)?
• Overlap communication with 

computation 
• 2.5X improvement on 40 nodes
• Will be released soon

M. Li, X. Lu, K. Hamidouche, J. Zhang, and D. K. Panda, Mizan-RMA: Accelerating Mizan Graph Processing Framework with MPI RMA, Int’l 

Conference on High Performance Computing, HiPC’16, To be presented
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MVAPICH2 for Omni-Path and KNL

• MVAPICH2 has been supporting QLogic/PSM for many years with all 
different compute platforms

• Latest version (MVAPICH2 2.2 GA) supports

• Omni-Path (derivative of QLogic IB)

• Xeon family with Omni-Path

• KNL with Omni-Path
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• New designs

– Take advantage of the idle cores 

– Dynamically configurable 

– Take advantage of highly multithreaded cores 

– Take advantage of MCDRAM of KNL processors

• Applicable to other programming models such as PGAS, Task-based, etc.

• Provides portability, performance, and applicability to runtime as well as 

applications in a transparent manner

Enhanced Designs for KNL: MVAPICH2 Approach 
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Performance Benefits of the Enhanced Designs

• New designs to exploit high concurrency and MCDRAM of KNL

• Significant improvements for large message sizes

• Benefits seen in varying message size as well as varying MPI processes 

Very Large Message Bi-directional Bandwidth16-process Intra-node All-to-AllIntra-node Broadcast with 64MB Message
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Performance Benefits of the Enhanced Designs
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Multi-Bandwidth using 32 MPI processesCNTK: MLP Training Time using MNIST (BS:64)

• Benefits observed on training time of Multi-level Perceptron (MLP) model on MNIST dataset 

using CNTK Deep Learning Framework

Enhanced Designs will be available in upcoming MVAPICH2 releases 
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MVAPICH2 – Plans for Exascale

• Performance and Memory scalability toward 1M cores

• Hybrid programming (MPI + OpenSHMEM, MPI + UPC, MPI + UPC++, MPI + CAF …)
• MPI + Task*

• Enhanced Optimization for GPU Support and Accelerators

• Taking advantage of advanced features of Mellanox InfiniBand
• Switch-IB2 SHArP*

• GID-based support*

• Enhanced communication schemes for upcoming architectures
• Knights Landing with MCDRAM*

• NVLINK*

• CAPI*

• Extended topology-aware collectives

• Extended Energy-aware designs and Virtualization Support

• Extended Support for MPI Tools Interface (as in MPI 3.1)

• Extended Checkpoint-Restart and migration support with SCR

• Support for * features will be available in future MVAPICH2 Releases 
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• Scientific Computing

– Message Passing Interface (MPI), including MPI + OpenMP, is the Dominant 

Programming Model 

– Many discussions towards Partitioned Global Address Space (PGAS) 

• UPC, OpenSHMEM, CAF, UPC++ etc.

– Hybrid Programming: MPI + PGAS (OpenSHMEM, UPC, UPC++) 

• Deep Learning

– Caffe, CNTK, TensorFlow, and many more

• Big Data/Enterprise/Commercial Computing

– Focuses on large data and data analysis

– Spark and Hadoop (HDFS, HBase, MapReduce) 

– Memcached is also used for Web 2.0 

Three Major Computing Categories
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• Deep Learning frameworks are a different game 

altogether

– Unusually large message sizes (order of 

megabytes)

– Most communication based on GPU buffers

• How to address these newer requirements?

– GPU-specific Communication Libraries (NCCL)

• NVidia's NCCL library provides inter-GPU 

communication

– CUDA-Aware MPI (MVAPICH2-GDR)

• Provides support for GPU-based communication

• Can we exploit CUDA-Aware MPI and NCCL to 

support Deep Learning applications?

Deep Learning: New Challenges for MPI Runtimes

1

32

4

Internode	Comm.	(Knomial)

1 2

CPU

PLX

3 4

PLX

Intranode Comm.
(NCCL	Ring)

Ring	Direction	

Hierarchical Communication (Knomial + NCCL ring)
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• NCCL has some limitations

– Only works for a single node, thus, no scale-out on 

multiple nodes

– Degradation across IOH (socket) for scale-up (within a 

node)

• We propose optimized MPI_Bcast

– Communication of very large GPU buffers (order of 

megabytes)

– Scale-out on large number of dense multi-GPU nodes

• Hierarchical Communication that efficiently exploits:

– CUDA-Aware MPI_Bcast in MV2-GDR 

– NCCL Broadcast primitive

Efficient Broadcast: MVAPICH2-GDR and NCCL
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Performance Benefits: Microsoft CNTK DL framework 
(25% avg. improvement ) 

Performance Benefits: OSU Micro-benchmarks

Efficient Large Message Broadcast using NCCL and CUDA-Aware MPI for Deep Learning, 
A. Awan , K. Hamidouche , A. Venkatesh , and D. K. Panda, 
The 23rd European MPI Users' Group Meeting (EuroMPI 16), Sep 2016 [Best Paper Runner-Up]
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• Can we optimize MVAPICH2-GDR to 

efficiently support DL frameworks?

– We need to design large-scale 

reductions using CUDA-Awareness

– GPU performs reduction using 

kernels

– Overlap of computation and 

communication

– Hierarchical Designs 

• Proposed designs achieve 2.5x 

speedup over MVAPICH2-GDR and 

133x over OpenMPI

Efficient Reduce: MVAPICH2-GDR
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• MV2-GDR provides 

optimized collectives for 

large message sizes 

• Optimized Reduce, 

Allreduce, and Bcast 

• Good scaling with large 

number of GPUs

• Available in MVAPICH2-

GDR 2.2GA
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• Caffe : A flexible and layered Deep Learning framework.

• Benefits and Weaknesses

– Multi-GPU Training within a single node

– Performance degradation for GPUs across different 

sockets 

– Limited Scale-out

• OSU-Caffe: MPI-based Parallel Training 

– Enable Scale-up (within a node) and Scale-out (across 

multi-GPU nodes)

– Scale-out on 64 GPUs for training CIFAR-10 network on 

CIFAR-10 dataset

– Scale-out on 128 GPUs for training GoogLeNet network on 

ImageNet dataset

OSU-Caffe: Scalable Deep Learning
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Invalid use case
OSU-Caffe publicly available from

http://hidl.cse.ohio-state.edu/

http://hidl.cse.ohio-state.edu/
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• Scientific Computing

– Message Passing Interface (MPI), including MPI + OpenMP, is the Dominant 

Programming Model 

– Many discussions towards Partitioned Global Address Space (PGAS) 

• UPC, OpenSHMEM, CAF, etc.

– Hybrid Programming: MPI + PGAS (OpenSHMEM, UPC, UPC++) 

• Deep Learning

– Caffe, CNTK, TensorFlow, and many more

• Big Data/Enterprise/Commercial Computing

– Focuses on large data and data analysis

– Spark and Hadoop (HDFS, HBase, MapReduce) 

– Memcached is also used for Web 2.0 

Three Major Computing Categories



HPC-Connection (SC ‘16) 42Network Based Computing Laboratory

How Can HPC Clusters with High-Performance Interconnect and Storage 
Architectures Benefit Big Data Applications?

Bring HPC and Big Data processing into a 
“convergent trajectory”!

What are the major 

bottlenecks in current Big 

Data processing 

middleware (e.g. Hadoop, 

Spark, and Memcached)?

Can the bottlenecks be 
alleviated with new 

designs by taking 
advantage of HPC 

technologies?

Can RDMA-enabled

high-performance 

interconnects

benefit Big Data 

processing?

Can HPC Clusters with 

high-performance 

storage systems (e.g. 

SSD, parallel file 

systems) benefit Big 

Data applications?

How much 

performance benefits

can be achieved 

through enhanced 

designs?

How to design 

benchmarks for  

evaluating the 

performance of Big 

Data middleware on 

HPC clusters?
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Designing Communication and I/O Libraries for Big Data Systems: 
Challenges 

Big Data Middleware
(HDFS, MapReduce, HBase, Spark and Memcached)

Networking Technologies

(InfiniBand, 1/10/40/100 GigE
and Intelligent NICs)

Storage Technologies
(HDD, SSD, and NVMe-SSD)

Programming Models
(Sockets)

Applications

Commodity Computing System 
Architectures

(Multi- and Many-core 
architectures and accelerators)

Other Protocols?

Communication and I/O Library

Point-to-Point
Communication

QoS

Threaded Models
and Synchronization

Fault-ToleranceI/O and File Systems

Virtualization

Benchmarks

Upper level 

Changes?
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• RDMA for Apache Spark 

• RDMA for Apache Hadoop 2.x (RDMA-Hadoop-2.x)

– Plugins for Apache, Hortonworks (HDP) and Cloudera (CDH) Hadoop distributions

• RDMA for Apache HBase

• RDMA for Memcached (RDMA-Memcached)

• RDMA for Apache Hadoop 1.x (RDMA-Hadoop)

• OSU HiBD-Benchmarks (OHB)

– HDFS, Memcached, and HBase Micro-benchmarks

• http://hibd.cse.ohio-state.edu

• Users Base: 195 organizations from 27 countries

• More than 18,600 downloads from the project site

• RDMA for Impala (upcoming)

The High-Performance Big Data (HiBD) Project

Available for InfiniBand and RoCE

http://hibd.cse.ohio-state.edu/
mailto:panda@cse.ohio-state.edu
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• HHH: Heterogeneous storage devices with hybrid replication schemes are supported in this mode of operation to have better fault-tolerance as well 

as performance. This mode is enabled by default in the package. 

• HHH-M: A high-performance in-memory based setup has been introduced in this package that can be utilized to perform all I/O operations in-

memory and obtain as much performance benefit as possible. 

• HHH-L: With parallel file systems integrated, HHH-L mode can take advantage of the Lustre available in the cluster.

• HHH-L-BB: This mode deploys a Memcached-based burst buffer system to reduce the bandwidth bottleneck of shared file system access. The burst 

buffer design is hosted by Memcached servers, each of which has a local SSD.

• MapReduce over Lustre, with/without local disks: Besides, HDFS based solutions, this package also provides support to run MapReduce jobs on top 

of Lustre alone. Here, two different modes are introduced: with local disks and without local disks.

• Running with Slurm and PBS: Supports deploying RDMA for Apache Hadoop 2.x with Slurm and PBS in different running modes (HHH, HHH-M, HHH-

L, and MapReduce over Lustre).

Different Modes of RDMA for Apache Hadoop 2.x
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• RDMA-based Designs and Performance Evaluation

– HDFS

– MapReduce

– Spark

Acceleration Case Studies and Performance Evaluation
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Triple-H

Heterogeneous Storage

• Design Features

– Three modes

• Default (HHH)

• In-Memory (HHH-M)

• Lustre-Integrated (HHH-L)

– Policies to efficiently utilize the heterogeneous 

storage devices

• RAM, SSD, HDD, Lustre

– Eviction/Promotion based on data usage 

pattern

– Hybrid Replication

– Lustre-Integrated mode:

• Lustre-based fault-tolerance

Enhanced HDFS with In-Memory and Heterogeneous Storage

Hybrid Replication

Data Placement Policies

Eviction/Promotion

RAM Disk SSD HDD

Lustre

N. Islam, X. Lu, M. W. Rahman, D. Shankar, and D. K. Panda, Triple-H:  A Hybrid Approach to Accelerate HDFS on HPC Clusters 

with Heterogeneous Storage Architecture, CCGrid ’15,  May 2015

Applications
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Design Overview of MapReduce with RDMA

MapReduce

Verbs

RDMA Capable Networks

(IB, iWARP, RoCE ..)

OSU Design

Applications

1/10/40/100 GigE, IPoIB 
Network

Java Socket Interface Java Native Interface (JNI)

Job

Tracker

Task

Tracker

Map

Reduce

• Enables high performance RDMA communication, while supporting traditional socket interface

• JNI Layer bridges Java based MapReduce with communication library written in native code

• Design Features

– RDMA-based shuffle

– Prefetching and caching map output

– Efficient Shuffle Algorithms

– In-memory merge

– On-demand Shuffle Adjustment

– Advanced overlapping

• map, shuffle, and merge

• shuffle, merge, and reduce

– On-demand connection setup

– InfiniBand/RoCE support

M. W. Rahman, X. Lu, N. S. Islam, and D. K. Panda, HOMR: A Hybrid Approach to Exploit Maximum Overlapping in 

MapReduce over High Performance Interconnects, ICS, June 2014
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Performance Benefits – RandomWriter & TeraGen in TACC-Stampede

Cluster with 32 Nodes with a total of 128 maps

• RandomWriter

– 3-4x improvement over IPoIB 

for 80-120 GB file size

• TeraGen

– 4-5x improvement over IPoIB 

for 80-120 GB file size

RandomWriter TeraGen

Reduced by 3x Reduced by 4x
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Performance Benefits – Sort & TeraSort in TACC-Stampede

Cluster with 32 Nodes with a total of 
128 maps and 64 reduces

• Sort with single HDD per node

– 40-52% improvement over IPoIB 

for 80-120 GB data 

• TeraSort with single HDD per node

– 42-44% improvement over IPoIB 

for 80-120 GB data

Reduced by 52% Reduced by 44%

Cluster with 32 Nodes with a total of 
128 maps and 57 reduces
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• RDMA-based Designs and Performance Evaluation

– HDFS

– MapReduce

– Spark

Acceleration Case Studies and Performance Evaluation
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• Design Features

– RDMA based shuffle plugin

– SEDA-based architecture

– Dynamic connection 
management and sharing

– Non-blocking data transfer

– Off-JVM-heap buffer 
management

– InfiniBand/RoCE support

Design Overview of Spark with RDMA

• Enables high performance RDMA communication, while supporting traditional socket interface

• JNI Layer bridges Scala based Spark with communication library written in native code

X. Lu, M. W. Rahman, N. Islam, D. Shankar, and D. K. Panda, Accelerating Spark with RDMA for Big Data Processing: Early Experiences, Int'l Symposium on High 

Performance Interconnects (HotI'14), August 2014

X. Lu, D. Shankar, S. Gugnani, and D. K. Panda, High-Performance Design of Apache Spark with RDMA and Its Benefits on Various Workloads, IEEE BigData ‘16, Dec. 2016.

Spark Core

RDMA Capable Networks
(IB, iWARP, RoCE ..)

Apache Spark Benchmarks/Applications/Libraries/Frameworks

1/10/40/100 GigE, IPoIB Network

Java Socket Interface Java Native Interface (JNI)

Native RDMA-based Comm. Engine

Shuffle Manager (Sort, Hash, Tungsten-Sort)

Block Transfer Service (Netty, NIO, RDMA-Plugin)

Netty

Server

NIO

Server
RDMA

Server

Netty

Client

NIO

Client
RDMA

Client
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• InfiniBand FDR, SSD, 64 Worker Nodes, 1536 Cores, (1536M 1536R)

• RDMA-based design for Spark 1.5.1 

• RDMA vs. IPoIB with 1536 concurrent tasks, single SSD per node. 

– SortBy: Total time reduced by up to 80% over IPoIB (56Gbps) 

– GroupBy: Total time reduced by up to 74% over IPoIB (56Gbps) 

Performance Evaluation on SDSC Comet – SortBy/GroupBy

64 Worker Nodes, 1536 cores, SortByTest  Total Time 64 Worker Nodes, 1536 cores, GroupByTest Total Time
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• InfiniBand FDR, SSD, 32/64 Worker Nodes, 768/1536 Cores, (768/1536M 768/1536R)

• RDMA-based design for Spark 1.5.1 

• RDMA vs. IPoIB with 768/1536 concurrent tasks, single SSD per node. 

– 32 nodes/768 cores: Total time reduced by 37% over IPoIB (56Gbps) 

– 64 nodes/1536 cores: Total time reduced by 43% over IPoIB (56Gbps) 

Performance Evaluation on SDSC Comet – HiBench PageRank

32 Worker Nodes, 768 cores, PageRank Total Time 64 Worker Nodes, 1536 cores, PageRank Total Time
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Performance Evaluation on SDSC Comet: Astronomy Application

• Kira Toolkit1: Distributed astronomy image 

processing toolkit implemented using Apache Spark. 

• Source extractor application, using a 65GB dataset 

from the SDSS DR2 survey that comprises 11,150 

image files.

• Compare RDMA Spark performance with the 

standard apache implementation using IPoIB.

1. Z. Zhang, K. Barbary, F. A. Nothaft, E.R. Sparks, M.J. Franklin, D.A. 

Patterson, S. Perlmutter. Scientific Computing meets Big Data Technology: An 

Astronomy Use Case.  CoRR, vol: abs/1507.03325, Aug 2015.
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RDMA Spark Apache Spark
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21 %

Execution times (sec) for Kira SE 
benchmark using 65 GB dataset, 48 cores.

M. Tatineni, X. Lu, D. J. Choi, A. Majumdar, and D. K. Panda, Experiences and Benefits of Running RDMA Hadoop and Spark on SDSC 

Comet,  XSEDE’16, July 2016
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• Exascale systems will be constrained by
– Power

– Memory per core

– Data movement cost

– Faults

• Programming Models, Runtimes and Middleware need to be 
designed for

– Scalability

– Performance

– Fault-resilience

– Energy-awareness

– Programmability

– Productivity

• Highlighted some of the issues and challenges

• Need continuous innovation on all these fronts  

Looking into the Future ….
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