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Increasing Usage of HPC, Big Data and Deep Learning

Convergence of HPC, Big |
Data, and Deep Learning!
Increasing Need to Run these

applications on the Cloud!!
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Drivers of Modern HPC Cluster Architectures

D
Wy

Accelerators / Coprocessors

high compute density, high
performance/watt SSD, NVMe-SSD, NVRAM

>1 TFlop DP on a chip

High Performance Interconnects -
InfiniBand
Multi-core Processors <1lusec latency, 100Gbps Bandwidth>

e  Multi-core/many-core technologies

e Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE)

e  Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), NVMe-SSD
e  Accelerators (NVIDIA GPGPUs and Intel Xeon Phi)

e Available on HPC Clouds, e.g., Amazon EC2, NSF Chameleon, Microsoft Azure, etc.

Summit
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Scale-up and Scale-out

e Scale-up: Intra-node Communication

— Many improvements like:
e NVIDIA cuDNN, cuBLAS, NCCL, etc.
e CUDA 9 Co-operative Groups

e Scale-out: Inter-node Communication

— DL Frameworks — most are optimized for
single-node only

— Distributed (Parallel) Training is an

Scale-up Performance

emerging trend
e OSU-Caffe — MPI-based
e Microsoft CNTK — MPI/NCCL2

¢ Google TensorFlow — gRPC-based/MPI/NCCL2
e Facebook Caffe2 — Hybrid (NCCL2/Gloo/MPI)

NCCL1 NCCL2 Desired
cuDNN
MPI
MKL-DNN
gRPC
Hadoop

Scale-out Performance
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Deep Learning over Big Data (DLoBD)

e Deep Learning over Big Data (DLoBD) is one of the most efficient analyzing paradigms

e More and more deep learning tools or libraries (e.g., Caffe, TensorFlow) start running over big
data stacks, such as Apache Hadoop and Spark

e Benefits of the DLoBD approach

— Easily build a powerful data analytics pipeline
e E.g., Flickr DL/ML Pipeline, “How Deep Learning Powers Flickr”, http://bit.ly/1KIDfof

(1) Prepare (2) Deep (3)|2;:_iﬂgep (4) Apply ML
Datasets @Scale Learning @Scale analytics @Scale model @Scale

APACHE oaens APACHE
R Scioor SporK 2> STORM"

— Better data locality

— Efficient resource sharing and cost effective
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Holistic Evaluation is Important!!

° My framework is faster than DLEApplicationsflmage®ecognition,Bpeech®Processing,®tc.)
your framework! ‘ ‘ ‘
. DLEFrameworksfiCaffe,@ensorFlow,@tc.)
e This needs to be understood
. i Generic MKL@Dptimized cuDNN Optimized
Ina hO“Sth way. Convolutionayer Convolutionflayer Convolutionayer
I -
e Performance depends on i i i
the entire execution
. ATLAS 0] BLAS
environment (the full stack) ben MKL2017 CUDNN/CUBLAS
Other@BLASAibraries _
performance is not helpful ¥ ¥
Other@rocessors Multi-/Many-coreld Many-coreGPURE
(Xeon,Xeon®hi) (Pascal@100)
Hardware

A. A. Awan, H. Subramoni, and Dhabaleswar K. Panda. “An In-depth Performance Characterization of CPU- and GPU-based DNN Training on
Modern Architectures”, In Proceedings of the Machine Learning on HPC Environments (MLHPC'17). ACM, New York, NY, USA, Article 8.

Network Based Computing Laboratory




Research Challenges to Exploit HPC Technologies

1. What are the fundamental
issues in designing DL
frameworks?

— Memory Requirements

— Computation
Requirements

\
1
\J Deep Learning and Machine Learning Frameworks

Communication Overhead

2. Why do we need to support
distributed training?
— To overcome the limits of
single-node training

— To better utilize hundreds
of existing HPC Clusters

Network Based Computing Laboratory
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[ CNTK ] [ 0SU-Caffe ] [ Caffe2 ] [ TensorFlow ] [ MXNet J
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\ Major Computation and Communication Phases in DL Frameworks ,I
\ . Forward Gradient y 4
\ Lecelel [ et Backward Aggregation

8
. ¥ .
\2) Communication Runtimes to support
Distributed Training
¥ & ¥
CPU InfiniBand GPU
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Research Challenges to Exploit HPC Technologies (Cont’d)

3. What are the new design challenges
brought forward by DL frameworks for
Communication runtimes?

— Large Message Collective
Communication and Reductions

— GPU Buffers (CUDA-Awareness)

4. Can a Co-design approach help in
achieving Scale-up and Scale-out efficiently?

— Co-Design the support at Runtime

level and Exploit it at the DL
Framework level

— What performance benefits can
be observed?

— What needs to be fixed at the
communication runtime layer?
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Deep Learning and Machine Learning Frameworks

Caffe/
[ CNTK ] [OSU-Caffe] [ Caffe2 ] [TensorFIow] [ MXNet J
V4
V4
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o Major Computation and Communication Phases in DL Frameworks °
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: \ el B e Forward Gradient y )
_ e \ Backward Aggregation V4K
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e B ¥ $ Co-Design
C Communication Runtimes (MPI/NCCL/Gloo/MLSL) Opportunities
* e :
oint-to-
: . CUDA- Large-message 3
Point . \
C . Awareness Collectives
° Operations -
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Multiple Approaches taken up by OSU
e MPI-driven Deep Learning
e Co-designing Deep Learning Stacks with High-Performance MPI
e Qut-of-core DNN training
e Accelerating TensorFlow on HPC Systems
e Accelerating Big Data Stacks

e Efficient Deep Learning over Big Data
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Data Parallel Deep Learning and MPI Collectives

Loop {} |
e Major MPI Collectives | Backed: comm. b
- N
. . . MPI_Bcast (GPU0)__-=="""_.~ Sol T Te~al 1
involved in Designing - cai_(___)— et o, ~———_ 4 Raia
. L. 1 1 1 = Propagation
distributed frameworks g Params :; Params :g Params :g Params
5 tc % %
e MPI_Bcast - required for © J:‘D I )
DNN parameter exchange L, i L, i L, i L,
L | L I L I L
e MPI_Reduce — needed for F ~ B! F ~ (s FlF2|8! F 2~ | B | 2. Forward
radient accumulation ) : - : A : L Uackwasd
g L, ! L, ! L i 0 —
from mu|tip|e solvers packed_red : packed_red : packed_red I packed_red
uce buff | | uce buff | | uce_buff ' uce_buff
e MPI_Allreduce — use just |-======== ="=:::'---‘\-:-““:;" """ ST
. ~~“~~ S 4 ,—”—’
one Allreduce instead of ~~.§“g’.—— MPI_Reduce (GPU 0) 3. Gradient
Reduce and Broadcast Gradients Aggregatio

ApplyUpdates

EEEE ”

A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, S-Caffe: Co-designing MPI Runtimes and Caffe for Scalable Deep Learning on Modern GPU
Clusters. In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP '17)
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Overview of the MVAPICH2 Project

o High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)
—  MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002
—  MVAPICH2-X (MPI + PGAS), Available since 2011
—  Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014
—  Support for Virtualization (MVAPICH2-Virt), Available since 2015
—  Support for Energy-Awareness (MVAPICH2-EA), Available since 2015 //
,:s\ =

17 Years &

—  More than 506,000 (> 0.5 million) downloads from the OSU site directly <7
Counting! W

—  Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015 \\

— Used by more than 2,950 organizations in 86 countries

—  Empowering many TOP500 clusters (Nov ‘18 ranking) =
e 31 ranked 10,649,640-core cluster (Sunway TaihuLight) at NSC, Wuxi, China ///7//}\}\
e 14t 556,104 cores (Oakforest-PACS) in Japan 2007-20178
e 17t 367,024 cores (Stampede2) at TACC
e 27t 241,108-core (Pleiades) at NASA and many others

— Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, and OpenHPC)

— http://mvapich.cse.ohio-state.edu  partner in the upcoming TACC Frontera System

e  Empowering Top500 systems for over a decade
Network Based Computing Laboratory

SC’18 11



http://mvapich.cse.ohio-state.edu/

Architecture of MVAPICH2 Software Family

High Performance Parallel Programming Models

Message Passing Interface
(MPI)

PGAS
(UPC, OpenSHMEM, CAF, UPC++)

Hybrid --- MPI + X
(MPI + PGAS + OpenMP/Cilk)

High Performance and Scalable Communication Runtime

Diverse APIs and Mechanisms

Point-to- Remote
. Collectives Energy-
point X Job Startup Memory
L. Algorithms Awareness
Primitives Access

1/0 and Fault

File Systems

Introspection
& Analysis

Active
Messages

Virtualization
Tolerance

Support for Modern Networking Technology
(InfiniBand, iWARP, RoCE, Omni-Path)

Modern Features

SR-
IOV

Transport Protocols

s Rail

XRC ’ ubD

o |

Multi
UMR oDP

Support for Modern Multi-/Many-core Architectures
(Intel-Xeon, OpenPower, Xeon-Phi, ARM, NVIDIA GPGPU)

Transport Mechanisms Modern Features

Shared
Memory

CMA || IVSHMEM |  XPMEM* NVLink* | CAPI’

MCDRAM*

* Upcoming
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GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GPU

e Standard MPI interfaces used for unified data movement
e Takes advantage of Unified Virtual Addressing (>= CUDA 4.0)

e QOverlaps data movement from GPU with RDMA transfers

At Sender: -

MPI_Send(s_devbuf, size, ...); inside |
MVAPICHZ‘ ‘

At Receiver:
MPI_Recv(r_devbuf, size, ...);

High Performance and High Productivity
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Optimized MVAPICH2-GDR Design

30 GPU-GPU Inter-node Latency s000 GPU-GPU Inter-node Bi-Bandwidth
Q
Yy o
5 20 = 4000
g £ 11X
§ 10 1.85us 10x 'g 2000
©
- 0 ) 'g
O - N < 00 O N S 0 © N ¥ ¥ ¥ ¥ 3 0“““_—h—r‘-—‘-‘f‘
S MmO NW; A A NS @ :“‘:“:;ga‘gﬁ%ﬁﬁxx
Message Size (Bytes) S QD o
Message Size (Bytes
=#—-VV2-(NO-GDR) MV2-GDR 2.3 «fr=MV2-(NO-GDR) MV2-GDR-2.3
Q GPU-GPU Inter-node Bandwidth
< 4000
2 3000
£ 000 Ox MVAPICH2-GDR-2.3
3 1 Intel Haswell (E5-2687W @ 3.10 GHz) node - 20 cores
2 000 - NVIDIA Volta V100 GPU
@ 0 E&&EK& _—.—.—rﬁ-l’f‘ Mellanox Connect-X4 EDR HCA
qumgggmggﬁMM CUDA 9.0
o<
AR Mellanox OFED 4.0 with GPU-Direct-RDMA

Message Size (Bytes)

=fr=MV2-(NO-GDR) MV2-GDR-2.3
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Exploiting CUDA-Aware MPI for TensorFlow (Horovod)

3500
= 3000
e MVAPICH2-GDR offers excellent E 509  VIVAPICH2-GDRIsup to T
' ) o] 22% faster than MVAPICH2
performance via advanced designs for 2 2000
(]
MPI_Allreduce. @ 1500
<
e Upto22% better performance on g 1000
. >
Wilkes2 cluster (16 GPUs) g 00 i I
E o W
1 2 4 8 16

No. of GPUs (4GPUs/node)

MVAPICH2 ® MVAPICH2-GDR
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MVAPICH2-GDR: Allreduce Comparison with Baidu and OpenMPI
e 16 GPUs (4 nodes) MVAPICH2-GDR vs. Baidu-Allreduce and OpenMPI 3.0

100000 50000 ~10X better 6000 OpenMPI is ~5X slower
than Baidu

10000 5000
~30X better 40000 % 2000 .
1000 M £ MV2 is ~2X better
30000 3 3000 than Baidu \
100 3
% 2000
10 20000 =

1000
1 10000 ¢ 0 M

~4X better

Latency (us)

Latency (us)

SR IR D LT
N O © m 1 o o= ~o— QD D@D QDR
vagg 0 cb\,b%q’bb‘\’ﬁ’qiob%'@

512K 1M 2M aM

Message Size (Bytes
Message Size (Bytes) & (Bytes)

Message Size (Bytes)

=o—MVAPICH2 —e—=BAIDU OPENMPI

=o—MVAPICH2 -—e—BAIDU OPENMPI
=o—MVAPICH2 =—e—BAIDU OPENMPI

*Available since MVAPICH2-GDR 2.3a
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MVAPICH2-GDR vs. NCCL2 — Reduce Operation

Optimized designs in MVAPICH2-GDR 2.3b* offer better/comparable performance for most cases

MPI_Reduce (MVAPICH2-GDR) vs. ncclReduce (NCCL2) on 16 GPUs

100000

1000
~2.5X better

10000
100
1000

= B
z B
~ >
ey e
c ()]
O += 100
= 3 ~5X better
10
10
1
1 R N N N N N N N NN
©
N R R O O

4 8 16 32 64 128256512 1K 2K 4K 8K 16K 32K 64K

Message Size (Bytes) Message Size (Bytes)

=8— MVAPICH2-GDR NCCL2 =o— MVAPICH2-GDR NCCL2

*Will be available with upcoming MVAPICH2-GDR 2.3b
Platform: Intel Xeon (Broadwell) nodes equipped with a dual-socket CPU, 1 K-80 GPUs, and EDR InfiniBand Inter-connect

SC’18

17

Network Based Computing Laboratory




MVAPICH2-GDR vs. NCCL2 - Allreduce Operation

Optimized designs in MVAPICH2-GDR 2.3rc1 offer better/comparable performance for most cases

MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on 16 GPUs

1000 100000
10000
._‘_’_‘/—‘—o—o—o—oi—‘—""‘ ~1.2X better
— 100 B
2 3 1000 —
= ~3X better > ——
(&}
2 o
5 g 100
= 10 -
10
1
1
N
TeS N IRRAEEYEYE Y FF P SN S P S

— N un

Message Size (Bytes) Message Size (Bytes)

=o—MVAPICH2-GDR NCCL2 —o—MVAPICH2-GDR NCCL2

Platform: Intel Xeon (Broadwell) nodes equipped with a dual-socket CPU, 1 K-80 GPUs, and EDR InfiniBand Inter-connect
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OSU-Caffe: Scalable Deep Learning

e (Caffe: Aflexible and layered Deep Learning framework. GoogleNet (ImageNet) on 128 GPUs
B .
J enefits and Weaknesses 250
—  Multi-GPU Training within a single node
—  Performance degradation for GPUs across different % 200
sockets g
—  Limited Scale-out 8
£ 150
e  OSU-Caffe: MPI-based Parallel Training g
—  Enable Scale-up (within a node) and Scale-out (across = 100
multi-GPU nodes) ey
—  Scale-out on 64 GPUs for training CIFAR-10 network on % 50
CIFAR-10 dataset =
—  Scale-out on 128 GPUs for training GooglLeNet network on X X X
ImageNet dataset 0
8 16 32 64 128

OSU-Caffe publicly available from No. of GPUs

X Invalid use case

http://hidl.cse.ohio-state.edu/ W Caffe W OSU-Caffe (1024) m OSU-Caffe (2048)
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Out-of-Core Deep Neural Network Training with Caffe

o Large DNNs cannot be trained on GPUs due to memory limitation!

ResNet-50 is the state-of-the-art DNN architecture for Image
Recognition but current frameworks can only go up to a small batch
size of 45

Next generation models like Neural Machine Translation (NMT) are
ridiculously large, consists of billions of parameters, and require even
more memory

Can we design Out-of-core DNN training support using new software
features in CUDA 8/9 and hardware mechanisms in Pascal/Volta
GPUs?

. General intuition is that managed allocations “will be” slow!

The proposed framework called OC-Caffe (Out-of-Core Caffe) shows
the potential of managed memory designs that can provide
performance with negligible/no overhead.

In addition to Out-of-core Training support, productivity can be
greatly enhanced in terms of DL framework design by using the new
Unified Memory features.

e Out-of-core
P100@PU MemoryiimitH16E58) Training

v

B AlexNet B GoogleNet EVGG

N
o
B
oo

[N
o
]
I

[

512
256 256
50 64 100 150 sos
e = g g =5

TrainabilitygMemoryRequirements)

A. Awan, C. Chu, H. Subramoni, X. Lu, and D. K. Panda, OC-DNN: Exploiting Advanced Unified Memory Capabilities in CUDA 9 and

Volta GPUs for Out-of-Core DNN Training, HiPC ‘18
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Performance Trends for OC-Caffe

e OC-Caffe-Opt: up to 80% better than Intel-optimized CPU Caffe for ResNet-50 training on the Volta
V100 GPU with CUDA9 and CUDNN7

e  OC-Caffe allows efficient scale-up on DGX-1 system with Pascal P100 GPUs with CUDA9 and

CUDNN7

Out-of-core (over-subscription) Scale-up on DGX-1

|
|
20 :
— | O Caffe W OC-Caffe
g 15 ' 1 10000
g oc-caffe-opt is I 'g —
K% 80% better than 1 o v 1000 ]
— N 1 O -t; ]
9 10 intel-caffe (TIT) ]
® caffe-gpu 1 [2%) =)
z cannot intel- ! S @ 100
%} | =
Qo g run caffe-opt R =
= (N/A) ! o _qc') 10
g X X A
© B
£ - . BT
|
M caffe-gpu 2 oc-caffe-naive @ oc-caffe-opt I 1 2 4 8
m caffe-cpu intel-caffe intel-caffe-opt : Number®lGPUsADGX-1)

A. Awan, C. Chu, H. Subramoni, X. Lu, and D. K. Panda, OC-DNN: Exploiting Advanced Unified Memory Capabilities in CUDA 9 and
Volta GPUs for Out-of-Core DNN Training, HiPC ‘18
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Multiple Approaches taken up by OSU

e Accelerating TensorFlow on HPC Systems
e Accelerating Big Data Stacks

e Efficient Deep Learning over Big Data

Network Based Computing Laboratory



Performance Benefits for RDMA-gRPC with Micro-Benchmark

1000 18600

90
. —e—Default gRPC —e—Default gRPC
800 < 14900
o OSURDMA gRPC —.  —e—Default gRPC 3 OSU RDMA gRPC
(%]
> = o)
= = 600 _s_0sU RDMA gRPC 2 11200
45 o 2
[ ©
% 20 % 400 — 7500
1 -
15 200 3800
0 0 100
2 8 32 128 512 2K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4aM 8M

Payload (Bytes) Payload (Bytes)

payload (Bytes)

RDMA-gRPC RPC Latency

e gRPC-RDMA Latency on SDSC-Comet-FDR

Up to 2.7x performance speedup over IPolB for Latency for small messages

Up to 2.8x performance speedup over IPolB for Latency for medium messages

Up to 2.5x performance speedup over IPolB for Latency for large messages

R. Biswas, X. Lu, and D. K. Panda, Accelerating gRPC and TensorFlow with RDMA for High-Performance Deep Learning over InfiniBand, HiPC ‘18.
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Performance Benefit for RDMA-TensorFlow (Inception3)

B gRPPC (IPolB-100Gbps) B gRPPC (IPolB-100Gbps) 'g u gRPkI)’C((IPolB-loonbpS))
Verbs (RDMA-100Gbps) 400 = Megl (SR(DMA i S|OS) § 600 vl (RDMA-100Gbps)
2 200 = MPI (RDMA-100Gbps) 2 ps) - W AR-gRPC (RDMA-100Gbps)
o o m AR-gRPC (RDMA-100Gbps) n
9 W AR-gRPC (RDMA-100Gbps) 9 300 o
(V] (g%}
£ 150 2 £ 400
0 O B
Qo a0 200
g 100 g
£ = 200
50 100 I I I
0 0 0
Batch Slze Batch Slze Batch Slze
4 Nodes (8 GPUS) 8 Nodes (16 GPUS) 12 Nodes (24 GPUS)

e TensorFlow Inception3 performance evaluation on an IB EDR cluster _
— Up to 20% performance speedup over Default gRPC (IPolB) for 8 GPUs 2CZT;::":;:“::?FEW:,(VZ::da
— Up to 34% performance speedup over Default gRPC (IPolB) for 16 GPUs Adaptive RDMA-based gRPC. HiPC ‘18
— Up to 37% performance speedup over Default gRPC (IPolB) for 24 GPUs
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RDMA-TensorFlow Distribution

e High-Performance Design of TensorFlow over RDMA-enabled Interconnects

High performance RDMA-enhanced design with native InfiniBand support at the verbs-level for gRPC and TensorFlow

RDMA-based data communication

— Adaptive communication protocols

—  Dynamic message chunking and accumulation
—  Support for RDMA device selection

—  Easily configurable for different protocols (native InfiniBand and IPolB)
e  Current release: 0.9.1
— Based on Google TensorFlow 1.3.0

— Tested with
e Mellanox InfiniBand adapters (e.g., EDR)
e NVIDIA GPGPU K80
e Tested with CUDA 8.0 and CUDNN 5.0

—  http://hidl.cse.ohio-state.edu
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Multiple Approaches taken up by OSU

e Accelerating Big Data Stacks

e Efficient Deep Learning over Big Data
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The High-Performance Big Data (HiBD) Project

RDMA for Apache Spark
RDMA for Apache Hadoop 3.x (RDMA-Hadoop-3.x)

RDMA for Apache Hadoop 2.x (RDMA-Hadoop-2.x)
—  Plugins for Apache, Hortonworks (HDP) and Cloudera (CDH) Hadoop distributions

RDMA for Apache Kafka

RDMA for Apache HBase

RDMA for Memcached (RDMA-Memcached)
RDMA for Apache Hadoop 1.x (RDMA-Hadoop)

OSU HiBD-Benchmarks (OHB)
—  HDFS, Memcached, HBase, and Spark Micro-benchmarks

http://hibd.cse.ohio-state.edu

Users Base: 295 organizations from 34 countries

More than 28,300 downloads from the project site

High-Performance
Big Data

Available for InfiniBand and RoCE
Also run on Ethernet

Available for x86 and OpenPOWER

Support for Singularity and Docker

THE OHIO STATE
UNIVERSITY
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Performance Numbers of RDMA for Apache Hadoop 2.x -
RandomWeriter & TeraGen in OSU-RI2 (EDR)

;“5’8 IPoIB (EDR)  Reduced by 3x ’;gg IPolB (EDR) Reduced by 4x
Z 0 ™ OSU-IB (EDR) Z 600 m OSU-IB (EDR)
£ 250 § 500
: 1
S 150 =
g 100 g 200 L
w50 +— w100

= = B e =
80 120 160 80 160 240
Data Size (GB) Data Size (GB)
RandomWriter TeraGen
Cluster with 8 Nodes with a total of 64 maps
e RandomWriter e TeraGen
— 3x improvement over IPolB — 4x improvement over IPolB for
for 80-160 GB file size 80-240 GB file size
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Performance Evaluation on SDSC Comet — HiBench PageRank

800 450

9 43%
200 IPolB 37% 200 IPolB 6
600 . DNANAA I 350 _
= W RDMA = - IRDMA
% 500 @ 300
P < 250
¢ 400 o
E E 200
300 150
200 100
100 50 L .
0 .. : 0 : :
Huge BigData Gigantic Huge BigData Gigantic
Data Size (GB) Data Size (GB)
32 Worker Nodes, 768 cores, PageRank Total Time 64 Worker Nodes, 1536 cores, PageRank Total Time

e |nfiniBand FDR, SSD, 32/64 Worker Nodes, 768/1536 Cores, (768/1536M 768/1536R)
e RDMA-based design for Spark 1.5.1

e RDMA vs. IPolB with 768/1536 concurrent tasks, single SSD per node.
— 32 nodes/768 cores: Total time reduced by 37% over IPolB (56Gbps)

— 64 nodes/1536 cores: Total time reduced by 43% over IPolIB (56Gbps)
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High-Performance Deep Learning over Big Data (DLoBD) Stacks

¢ Cha“enges Of Deep Learning over Blg Data ‘ Deep Learning Models & Algorithms on Big Data Sets ’
(DLoBD) P N oo

= Can RDMA-based designs in DLoBD stacks improve / Czife:ep#gsggpgobivbrgif;e&(ee-ga) | RDMA || High-Speed
performance, scalability, and resource utilization : : : GDR || Networks

. . . [ Big Data Fr orks (e.g., | S 4 :
on high-performance interconnects, GPUs, and ! 9 Hadoo;’;‘g;”rkf estcf)eg PR '\(cupa | Accelerator |
‘- _') 1 I" l__-‘ \, :
multi-core CPUs? o ' [ Resource Scheduler (e.g, || *< > NN J| = GPUs
= What are the performance characteristics of ! YARN, Mesos, etc.) ! ' N \
representative DLoBD stacks on RDMA networks? ! (Distributed File Systems (e.g. | ! [ i || MuCore |
oL « | HDFS, Ceph, OrangeFS, etc.) '/ | '
« Characterization on DLoBD Stacks JLIDFS, Ceph, Orange™s, efe) ) e f
= CaffeOnSpark, TensorFlowOnSpark, and BigDL 5010 e 60
= |PolB vs. RDMA; In-band communication vs. Out- 4010 ——RDMA-Time .

== |Po|B-Accuracy

of-band communication; CPU vs. GPU; etc.
=8 RDMA-Accuracy

= Performance, accuracy, scalability, and resource
utilization

= RDMA-based DLoBD stacks (e.g., BigDL over
RDMA-Spark) can achieve 2.6x speedup compared
to the IPoIB based scheme, while maintain similar
accuracy

- 40
3010

2010
- 20

Accuracy (%)

1010

Epochs Time (secs)

0

=
o

123 456 7 8 91011121314 151617 18
Epoch Number

X. Lu, H. Shi, M. H. Javed, R. Biswas, and D. K. Panda, Characterizing Deep Learning over Big Data (DLoBD) Stacks on RDMA-capable Networks, Hotl 2017.
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Conclusions

e Scalable distributed training is getting important

e Requires high-performance middleware designs while exploiting modern
interconnects

e Provided a set of different solutions to achieve scalable distributed
training
— CUDA-aware MPI with optimized collectives
— TensorFlow-gRPC with RDMA support
— Efficient DL support over Big Data

e Will continue to enable the DL community to achieve scalability and

high-performance for their distributed training
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Thank You!

panda@cse.ohio-state.edu

pased Co
& 2,
3 %

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

Laboratory

C X - .
_—— ()
B~ MVAPICH e HiBD HiDL
-_.’ an ri + ibrar . s
MPI, PGAS and Hybrid MPI+PGAS Library ngh_Performance H’gh-Performance
Big Data Deep Learning
The High-Performance MPI/PGAS Project The High-Performance Big Data Project The High-Performance Deep Learning Project
http://mvapich.cse.ohio-state.edu/ http://hibd.cse.ohio-state.edu/ http://hidl.cse.ohio-state.edu/
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