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• Introduction

• GPU-enabled Allreduce Designs in MVAPICH2-GDR

• Concluding Remarks

Outline
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Trends in Modern HPC Architecture: Heterogeneous

• Multi-core/many-core technologies
• High Performance Interconnects

• High Performance Storage and Compute devices
• Variety of programming models (MPI, PGAS, MPI+X)

Accelerators / Coprocessors 
high compute density,
high performance/watt

High Performance Interconnects 
InfiniBand, Omni-Path, EFA

<1usec latency, 200Gbps Bandwidth

Multi/ Many-core 
Processors

SSD, NVMe-SSD, 
NVRAM

Node local storage

#1 Summit
(27,648 GPUs)

#2 Sierra (17,280 GPUs)
#10 Lassen (2,664 GPUs)

#8 ABCI
(4,352 GPUs)

#22 DGX SuperPOD
(1,536 GPUs)
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• Scale-up (up to 150 GB/s)

– PCIe, NVLink/NVSwitch

– Infinity Fabric, Gen-Z, CXL

• Scale-out (up to 25 GB/s)

– InfiniBand, Omni-path, Ethernet

– Cray Slingshot

Trends in Modern Large-scale Dense-GPU Systems
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inside
MVAPICH2

• Supports and optimizes various communication patterns 

• Overlaps data movement from GPU with RDMA transfers 

GPU-Aware (CUDA-Aware) Communication Middleware

MPI-based Generic Communication Middleware DL-Specific Communication Middleware

• Ring-based collective operations

• Optimized for DL workloads on GPU systems
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• Easy-to-use and high-performance frameworks

• Wide range of applications
– Image Classification
– Speech Recognition
– Self-driving car
– Healthcare
– Climate Analytic

GPU-enabled Emerging Deep Learning Applications

Kurth T, Treichler S, Romero J, Mudigonda M, Luehr N, Phillips E, Mahesh A, Matheson M, Deslippe J, Fatica M, 
Houston M. Exascale deep learning for climate analytics. SC 2018 Nov 11 (p. 51). (Golden Bell Prize)

999 PetaFlop/s sustained, and 1.13 ExaFlop/s peak 
FP 16 performance over 4560 nodes (27,360 GPU)
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Motivated Example – Reduction Op. for DL Training

• Can GPU resources help improving compute-intensive communications?
– E.g., MPI_Reduce, MPI_Allreduce, MPI_Scan

– Emerging distributed deep learning training
• Exchange and update weights

– Requires fast and high-bandwidth solutions

https://www.oreilly.com/ideas/distributed-tensorflow

Ben-Nun T, Hoefler T. Demystifying parallel and distributed 
deep learning: An in-depth concurrency analysis. arXiv
preprint arXiv:1802.09941. 2018 Feb 26.

https://www.oreilly.com/ideas/distributed-tensorflow
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• Existing designs
1. Explicit copy the data from GPU to host memory 

2. Host-to-Host communication to remote processes

3. Perform computation on CPU

4. Explicit copy the data from host to GPU memory

• Proposed designs
1. GPU-to-GPU communication

• NVIDIA GPUDirect RDMA (GDR)

• Pipeline through host for large msg

2. Perform computation on GPU
• Efficient CUDA kernels

How to leverage GPUs for MPI Reduction Operations?

CPU

Host Memory

GPU

PCIe IB 
Adapter

CPU

Host Memory

GPU

PCIeIB 
Adapter1

2

3

4

1

2

Node BNode A

Ching-Hsiang Chu et al., "CUDA Kernel based Collective Reduction Operations on Large-scale GPU 
Clusters, " IEEE/ACM CCGrid 2016
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• Gather-first algorithm

– Root gathers all the data and perform the computation

– Low computation overhead

– Poor scalability

Proposed Gather-first MPI_Reduce / MPI_Scan

0 1 2 3 4 5 6 7

(𝑛𝑛 − 1) × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑀𝑀) + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑀𝑀) + 2 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑀𝑀)

Good for small messages and small scale



SC 19 Doctoral Showcase 10Network Based Computing Laboratory

• GPU-enabled Recursive doubling algorithm
– Every processor needs to perform computation

– Load balance, Efficient/scalable communication

– Higher average latency

Proposed GPU-enabled MPI_Allreduce / MPI_Scan

0 1 2 3 4 5 6 7
[1]

[2]

[3]

log2 𝑛𝑛 × 𝜖𝜖 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺 𝑀𝑀 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝐺𝐺𝐺𝐺𝐺𝐺 𝑀𝑀 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺(𝑀𝑀)
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Communication Computation Design Algorithm Benefit

Host<->Host
CPU

BR-H-HH (Default) Binomial-Reduce Large scale, 
small messagesRD-H-HH (Default) Recursive doubling

GR-H-HH

Gather-Reduce Small scale, 
small messages

GPU

GR-HH
Host<->Device (GDR) GR-HD / GR-DH

Device<->Device
(GDR)

GR-DD

BR-DD Binomial-Reduce

Large messages
for any scale

BRB-DD Binomial-Reduce-Bcast

RD-DD
Recursive doubling

Host<->Device (GDR) RD-HD/RD-DH

Alternative and Extended Designs
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Evaluation - MPI_Reduce @ CSCS (96 GPUs)

Gather-first approaches 
win for small messages

K-nomial GPU-based approach win 
for large messages
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96 GPUs @ CSCS

Good Scalability
32 GPUs @ Wilkes

Ching-Hsiang Chu et al., "CUDA Kernel based Collective Reduction Operations on Large-scale GPU Clusters, " IEEE/ACM CCGrid 2016
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• Ring-based Allreduce for DL workloads cannot efficiently utilize fast 
interconnects

Allreduce Operations in Modern Dense-GPU System
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Ching-Hsiang Chu et al., “NV-Group: Cooperative and Link-Efficient Reductions for Deep Learning on NVLink-enabled Dense GPU Systems, ” (to be submitted)
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• Grouping GPUs which are fully connected by NVLinks
– Contention-free communication within the group

• Cooperative Reduction Kernels to exploit load-compute-store
primitives over NVLinks

Topology-aware Allreduce on Dense-GPU Clusters

Ching-Hsiang Chu et al., “NV-Group: Cooperative and Link-Efficient Reductions for Deep Learning on NVLink-enabled Dense GPU Systems, ” (to be submitted)
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Preliminary Results – Allreduce Benchmark
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Ching-Hsiang Chu et al., “NV-Group: Cooperative and Link-Efficient Reductions for Deep Learning on NVLink-enabled Dense GPU Systems, ” (to be submitted)
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Preliminary Results – Distributed Deep Learning Training
• ResNet-50 Training using TensorFlow benchmark on a DGX-2 machine (16 Volta GPUs)
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Ching-Hsiang Chu et al., “NV-Group: Cooperative and Link-Efficient Reductions for Deep Learning on NVLink-enabled Dense GPU Systems, ” (to be submitted)
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• High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002

– MVAPICH2-X (MPI + PGAS), Available since 2011

– Support for GPGPUs  (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014

– Support for Virtualization (MVAPICH2-Virt), Available since 2015

– Support for Energy-Awareness (MVAPICH2-EA), Available since 2015

– Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015

– Used by more than 3,000 organizations in 89 countries

– More than 553,000 (> 0.5 million) downloads from the OSU site directly

– Empowering many TOP500 clusters (June ‘19 ranking)

• 3rd ranked 10,649,640-core cluster (Sunway TaihuLight) at  NSC, Wuxi, China

• 16th, 556,104 cores (Oakforest-PACS) in Japan

• 19th, 367,024 cores (Stampede2) at TACC

• 31st, 241,108-core (Pleiades) at NASA and many others

– Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, and OpenHPC)

– http://mvapich.cse.ohio-state.edu

MVAPICH2 Project

Partner in the 5th ranked TACC Frontera System

Empowering Top500 systems for over a decade

http://mvapich.cse.ohio-state.edu/
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Thank You!

Questions?

chu.368@osu.edu

http://web.cse.ohio-state.edu/~chu.368  
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