

Scalable and Distributed Deep Learning (DL): Co-Design MPI Runtimes and DL Frameworks

OSU Booth Talk (SC '19)

Ammar Ahmad Awan

awan.10@osu.edu

Network Based Computing Laboratory

Dept. of Computer Science and Engineering

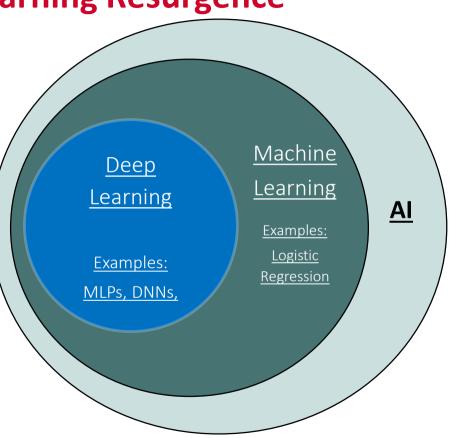
The Ohio State University

Agenda

- Introduction
 - Deep Learning Trends
 - CPUs and GPUs for Deep Learning
 - Message Passing Interface (MPI)
- Research Challenges: Exploiting HPC for Deep Learning
- Proposed Solutions
- Conclusion

Understanding the Deep Learning Resurgence

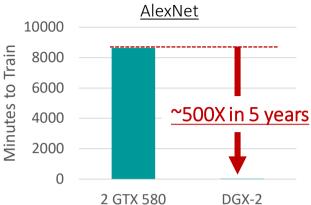
- Deep Learning (DL) is a sub-set of Machine Learning (ML)
 - Perhaps, the most revolutionary subset!
 - Feature extraction vs. hand-crafted features
- Deep Learning
 - A renewed interest and a lot of hype!
 - Key success: Deep Neural Networks (DNNs)
 - Everything was there since the late 80s
 except the <u>"computability of DNNs"</u>

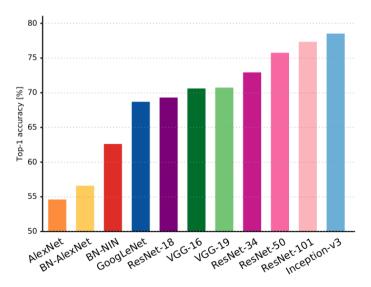


Adopted from: <u>http://www.deeplearningbook.org/contents/intro.html</u>

Deep Learning in the Many-core Era

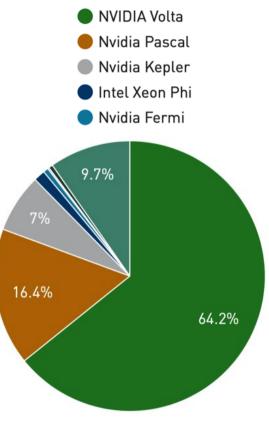
- Modern and efficient hardware enabled
 - <u>Computability of DNNs impossible in the</u> <u>past!</u>
 - GPUs at the core of DNN training
 - CPUs catching up fast
- Availability of **Datasets**
 - MNIST, CIFAR10, ImageNet, and more...
- Excellent <u>Accuracy</u> for many application areas
 - Vision, Machine Translation, and several others...





Deep Learning and HPC

- NVIDIA GPUs main driving force for faster training of DL models
 - The ImageNet Challenge (ILSVRC)
 - 90% of the ImageNet teams used GPUs in 2014
 - DNNs like Inception, ResNet(s), NASNets, and Amoeba
 - Natural fit for DL workloads throughput-oriented
- In the High Performance Computing (HPC) arena
 - 124/500 Top HPC systems use NVIDIA GPUs (Jun '19)
 - CUDA-Aware Message Passing Interface (MPI)
 - NVIDIA Fermi, Kepler, Pascal, and Volta GPUs
 - DGX-1 (Pascal) and DGX-2 (Volta) Dedicated DL supercomputers



Accelerator/CP Performance Share <u>www.top500.org</u>

Network Based Computing Laboratory

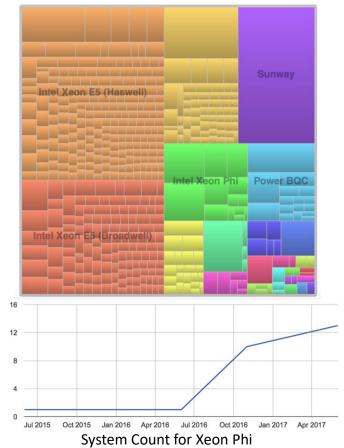
High-Performance Deep Learning

And CPUs are catching up fast

- Intel CPUs are everywhere and many-core CPUs are emerging according to Top500.org
- Host CPUs exist even on the GPU nodes
 - Many-core Xeon(s) and EPYC(s) are increasing
- Usually, we hear CPUs are 10x 100x slower than GPUs? [1-3]
 - But, CPU-based ML/DL is getting attention and performance has significantly improved now

- 2- http://ieeexplore.ieee.org/abstract/document/5762730/
- **3-** <u>https://dspace.mit.edu/bitstream/handle/1721.1/51839/MIT-CSAIL-TR-2010-013.pdf?sequence=1</u>

https://www.top500.org/statistics/list/



OSU Booth - SC '18

Deep Learning Frameworks – CPUs or GPUs?

- There are several Deep Learning (DL) or DNN Training frameworks
- Every (almost every) framework has been optimized for NVIDIA GPUs
 - cuBLAS and cuDNN have led to significant performance gains!
- But every framework is able to execute on a CPU as well
 - So why are we not using them?
 - Performance has been "terrible" and several studies have reported significant degradation when using CPUs (see nvidia.qwiklab.com)
- But there is hope, a lot of great progress here!
 - And MKL-DNN, just like cuDNN, has definitely rekindled this!!
 - The landscape for CPU-based DL looks promising..

Some parallelization strategies.. ۲ Data Parallelism or Model Parallelism Machine 2 Machine 3 Hybrid Parallelism Machine 1 Model Parallelism Machine 1 Machine 2 GPU GPU 3 GPU 3 GPU 3 GPU 3 Machine 1 Machine 2 Machine 3 Machine 4 Machine 3 Machine 4

Parallelization Strategies for DL

Hybrid (Model and Data) Parallelism

8

Machine 4

Data Parallelism

 Courtesy:
 http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks

 Network Based Computing Laboratory
 OSU Booth - SC '18
 High-Performance Deep Learning

What to use for Deep Learning scale-out?

- What is Message Passing Interface (MPI)?
 - a de-facto standard for expressing distributed-memory parallel programming
 - used for communication between processes in multi-process applications
- **MVAPICH2** is a high-performance implementation of the MPI standard
- What can MPI do for Deep Learning?
 - MPI has been used for large scale scientific applications
 - Deep Learning can also exploit MPI to perform high-performance communication
- Why do I need communication in Deep Learning?
 - If you use one GPU or one CPU, you do not need communication
 - But, one GPU or CPU is not enough! DL needs as many compute elements as it can get!
 - MPI is a great fit Point to Point and Collectives (Broadcast, Reduce, and Allreduce) are all you need for many types of parallel DNN training (data-parallel, model-parallel, and hybrid-parallel)

MVAPICH2: The best MPI Library for Deep Learning!

- High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)
 - MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002
 - MVAPICH2-X (MPI + PGAS), Available since 2011
 - Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014
 - Support for Virtualization (MVAPICH2-Virt), Available since 2015
 - Support for Energy-Awareness (MVAPICH2-EA), Available since 2015
 - Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015
 - Used by more than 3,050 organizations in 89 countries
 - More than 615,000 (> 0.6 million) downloads from the OSU site directly
 - Empowering many TOP500 clusters (June '19 ranking)
 - 3rd ranked 10,649,640-core cluster (Sunway TaihuLight) at NSC, Wuxi, China
 - 8th, 391,680 cores (ABCI) in Japan
 - 16th, 556,104 cores (Oakforest-PACS) in Japan
 - 19th, 367,024 cores (Stampede2) at TACC
 - 31st, 241,108-core (Pleiades) at NASA and many others
 - Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, OpenHPC, and Spack)
 - <u>http://mvapich.cse.ohio-state.edu</u>
- Empowering Top500 systems for over a decade

OSU Booth - SC '18

High-Performance Deep Learning

Partner in the 5th ranked TACC Frontera System

Agenda

Introduction

- Research Challenges: Exploiting HPC for Deep Learning
- Proposed Solutions
- Conclusion

Research Area: Requirements and Trends

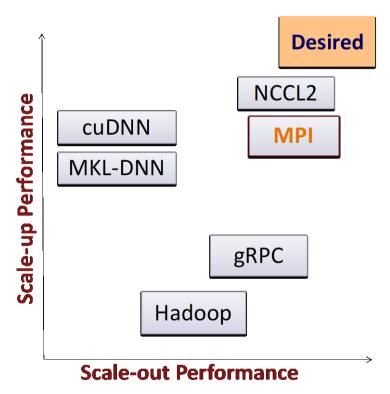
- Intersection of HPC and Deep Learning
 - DL Frameworks
 - Communication Runtimes
 - GPUs and Multi-/Many-core CPUs
 - High-Performance Interconnects

HPC (MPI, CUDA-Aware Communication, GPUDirect RDMA, etc.)

- Large DNNs <u>very-large messages, GPU buffers, and out-of-core workloads!</u>
- HPC-oriented Communication Middleware <u>under-optimized for such workloads!</u>
- DL Frameworks <u>mostly optimized for single-node</u>
 - Distributed/Parallel Training an emerging trend!
 - Scale-up (Intra-node) and Scale-out (Inter-node) options need to be explored

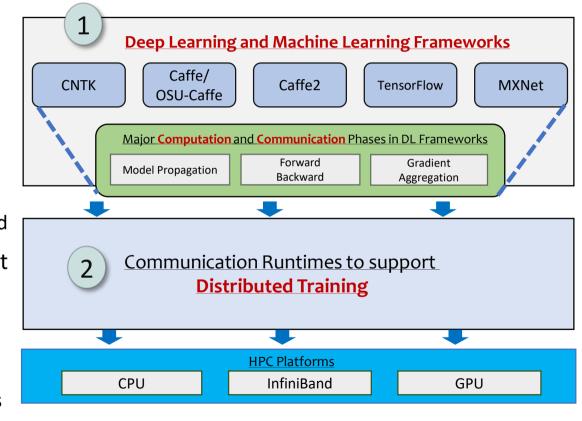
Broad Challenge

How to efficiently Scale-up and Scale-out Deep Learning (DL) workloads by exploiting diverse High Performance Computing (HPC) technologies and co-designing Communication Middleware like MPI and DL Frameworks?



Research Challenges to Exploit HPC Technologies

- What are the fundamental issues in designing DL frameworks?
 - Memory Requirements
 - Computation
 Requirements
 - **Communication** Overhead
- 2. Why do we need to support distributed training?
 - To overcome the limits of single-node training
 - To better utilize hundreds of existing HPC Clusters



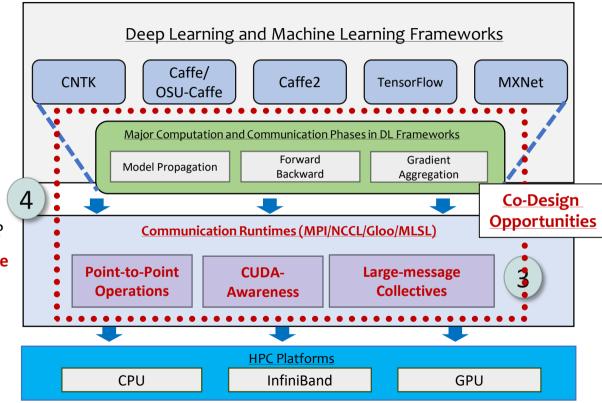
Research Challenges to Exploit HPC Technologies (Cont'd)

3. What are the **new design challenges** brought forward by DL frameworks for Communication runtimes?

- Large Message Collective
 Communication and Reductions
- GPU Buffers (CUDA-Awareness)

4. Can a **Co-design** approach help in achieving Scale-up and Scale-out efficiently?

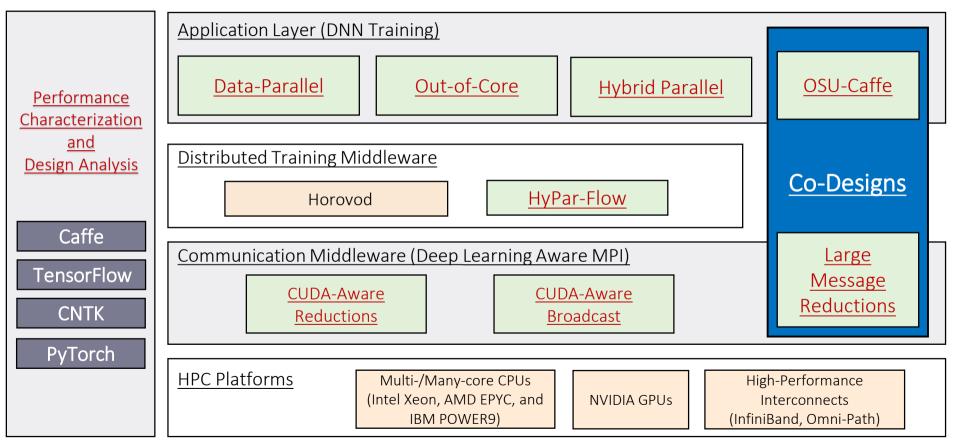
- Co-Design the support at Runtime level and Exploit it at the DL
 Framework level
- What performance benefits can be observed?
- What needs to be fixed at the communication runtime layer?



Agenda

- Introduction
- Research Challenges: Exploiting HPC for Deep Learning
- Proposed Solutions
- Conclusion

Overview of the Proposed Solutions



Network Based Computing Laboratory

OSU Booth - SC '18

17

Understanding the Impact of Execution Environments

Generic

Convolution Laver

ATLAS

BLAS Libraries

Hardware

DL Frameworks (Caffe, TensorFlow, etc.)

Other BLAS Libraries

OpenBLAS

- Performance depends on many factors
- Hardware Architectures
 - GPUs
 - Multi-/Many-core CPUs
 - Software Libraries: cuDNN (for GPUs), MKL-DNN/MKL 2017 (for CPUs)
- Hardware and Software codesign
 - Software libraries optimized for one platform will not help the other!
 - cuDNN vs. MKL-DNN

A. A. Awan, H. Subramoni, D. Panda, "An In-depth Performance Characterization of CPU- and GPU-based DNN Training on Modern Architectures" 3rd Workshop on Machine Learning in High Performance Computing Environments, held in conjunction with SC17, Nov 2017.

Other Processors

Network Based Computing Laboratory

OSU Booth - SC '18

cuDNN Optimized

Convolution Layer

cuDNN/cuBLAS

Many-core GPU

(Pascal P100)

DL Applications (Image Recognition, Speech Processing, etc.)

MKL Optimized

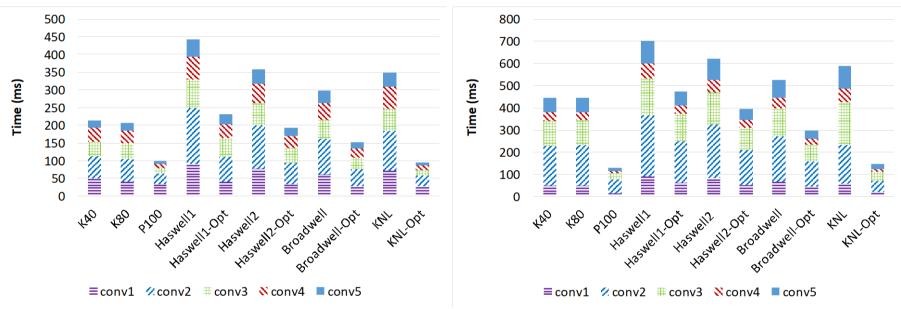
Convolution Layer

Multi-/Many-core

(Xeon, Xeon Phi)

MKL 2017

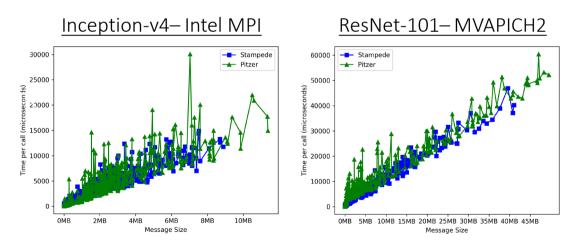
The Full Landscape for AlexNet Training on CPU/GPU



- Convolutions in the Forward and Backward Pass
- Faster Convolutions → Faster Training
- Most performance gains are based on *conv2* and *conv3*.

Communication Profiling of Distributed TF

- White-box profiling is needed for complex DL frameworks
- <u>hvprof</u> provides multiple types of valuable metrics for
 - 1) ML/DL developers and 2) Designers of MPI libraries
- Profile of Latency for Allreduce (NVLink, PCIe, IB, Omni-Path)
- <u>Summary: Non-power of 2 is under-optimized for all libraries!</u>

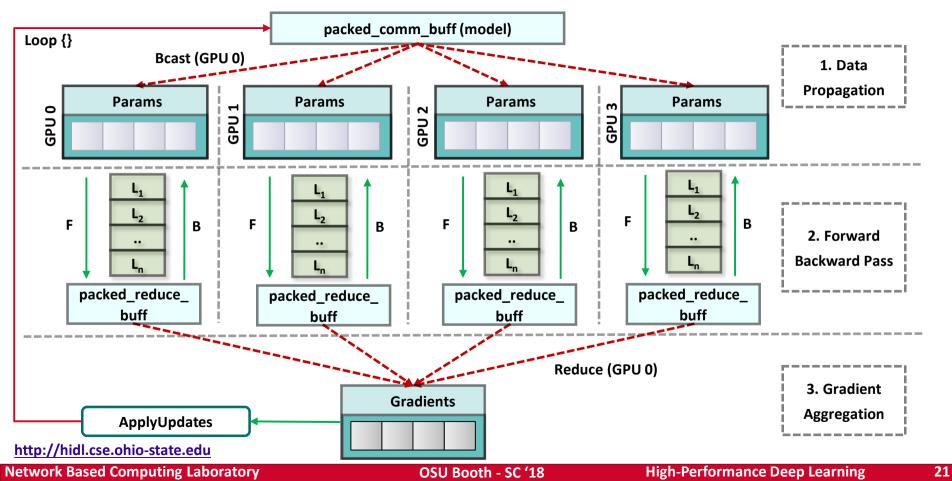


Deep Learning Frameworks		
MXN	et PyTorch	TensorFlow
Distributed Training Middleware (Horovod) Proposed Profiling Infrastructure (hyprof)		
Communication Middleware		
NCCL MPI		
HPC Platforms High-Performance Interconnects		
CPUs	Omni-Path	NVLink
GPUs	InfiniBand	PCle
Fusion Enabled		
100 80 60 40 0 0 0 7 14 21 28 35 42 49 56 63		
Message Size (MB) Fusion Disabled		

A. A. Awan et al., "Communication Profiling and Characterization of Deep Learning Workloads on Clusters with High-Performance Interconnects", IEEE Hot Interconnects '19.

OSU Booth - SC '18

OSU-Caffe Architecture

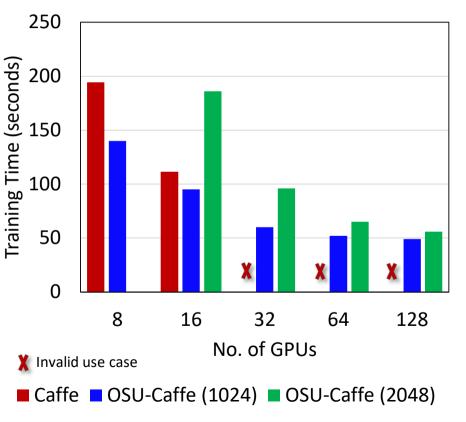


OSU-Caffe 0.9: Scalable Deep Learning on GPU Clusters

- Caffe : A flexible and layered Deep Learning framework.
- Benefits and Weaknesses
 - Multi-GPU Training within a single node
 - Performance degradation for GPUs across different sockets
 - Limited Scale-out
- OSU-Caffe: MPI-based Parallel Training
 - Enable Scale-up (within a node) and Scale-out (across multi-GPU nodes)
 - Scale-out on 64 GPUs for training CIFAR-10 network on CIFAR-10 dataset
 - Scale-out on 128 GPUs for training GoogLeNet network on ImageNet dataset

OSU-Caffe 0.9 available from HiDL site

GoogLeNet (ImageNet) on 128 GPUs



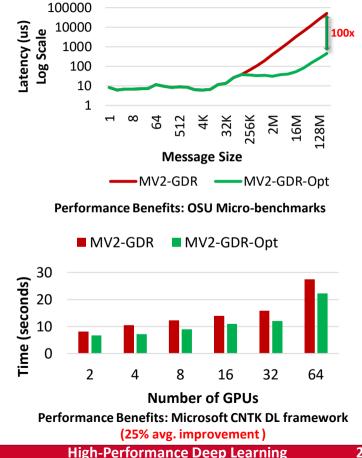
Network Based Computing Laboratory

OSU Booth - SC '18

Efficient Broadcast for MVAPICH2-GDR using NVIDIA NCCL

- NCCL has some limitations
 - Only works for a single node, thus, no scale-out on multiple nodes
 - Degradation across IOH (socket) for scale-up (within a node)
- We propose optimized MPI_Bcast
 - Communication of very large GPU buffers (order of megabytes)
 - Scale-out on large number of dense multi-GPU nodes
- Hierarchical Communication that efficiently exploits:
 - CUDA-Aware MPI_Bcast in MV2-GDR
 - NCCL Broadcast primitive

Efficient Large Message Broadcast using NCCL and CUDA-Aware MPI for Deep Learning, A. Awan, K. Hamidouche, A. Venkatesh, and D. K. Panda, EuroMPI 16 [Best Paper Runner-Up]

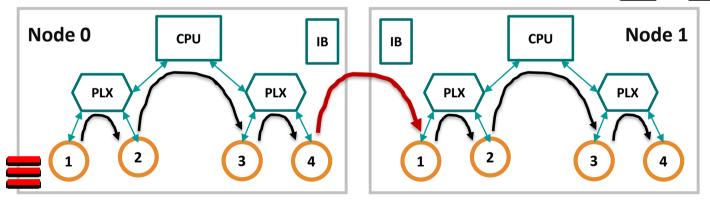


Network Based Computing Laboratory

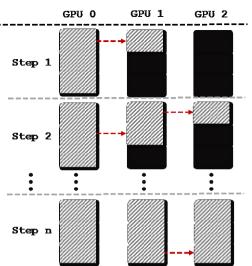
OSU Booth - SC '18

Pure MPI Large Message Bcast (w/out NCCL)

- Efficient Intra-node communication on PCIe-based dense-GPU systems
 - Pipeline multiple chunks in a <u>uni-directional</u> ring fashion
 - Take advantage of the PCIe and IB topology to utilize all <u>bi-</u> <u>directional</u> links to saturate the maximum available bandwidth between GPUs



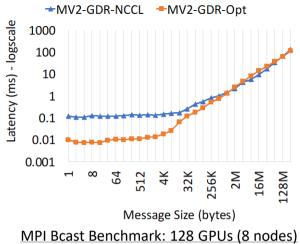
A. A. Awan et al., "Optimized Large-Message Broadcast for Deep Learning Workloads: MPI, MPI+NCCL, or NCCL2?", J. Parallel Computing (2019)

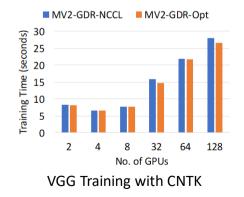


24

Pure MPI Large Message Bcast (w/out NCCL)

- MPI_Bcast: Design and Performance Tuning for DL Workloads
 - Design ring-based algorithms for large messages
 - Harness a multitude of algorithms and techniques for bes performance across the full range of message size and process/GPU count
- Performance Benefits
 - Performance comparable or better than NCCLaugmented approaches for large messages
 - Up to 10X improvement for small/medium message sizes with micro-benchmarks and up to 7% improvement for VGG training



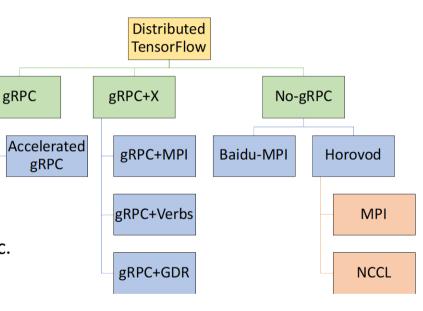


A. A. Awan et al., "Optimized Large-Message Broadcast for Deep Learning Workloads: MPI, MPI+NCCL, or NCCL2?", J. Parallel Computing (2019)

Data Parallel Training with TensorFlow (TF)

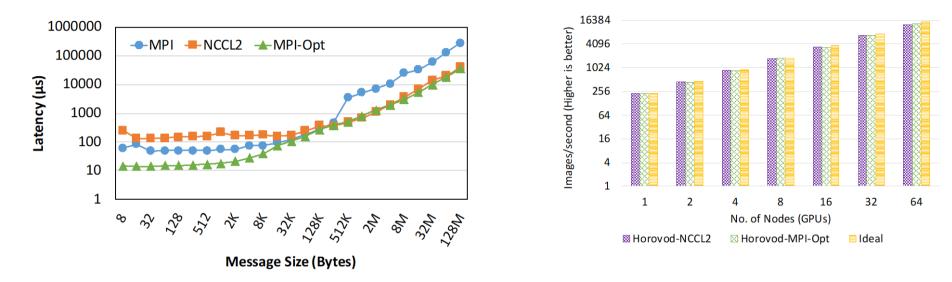
- Need to understand several options currently available
- gRPC (official support)
 - Open-source can be enhanced by others
 - Accelerated gRPC (add RDMA to gRPC)
- gRPC+X
 - Use gRPC for bootstrap and rendezvous
 - Actual communication is in "X"
 - $X \rightarrow MPI$, Verbs, GPUDirect RDMA (GDR), etc.
- No-gRPC
 - Baidu the first one to use MPI Collectives for TF
 - Horovod Use NCCL, or MPI, or any other future library (e.g. IBM DDL recently added)

A. A. Awan, J. Bedorf, C.-H. Chu, H. Subramoni and D. K. Panda, "Scalable Distributed DNN Training using TensorFlow and CUDA-Aware MPI: Characterization, Designs, and Performance Evaluation", CCGrid '19. <u>https://arxiv.org/abs/1810.11112</u>



OSU Booth - SC '18

Data Parallel Training with TF: NCCL vs. MVAPICH2-GDR



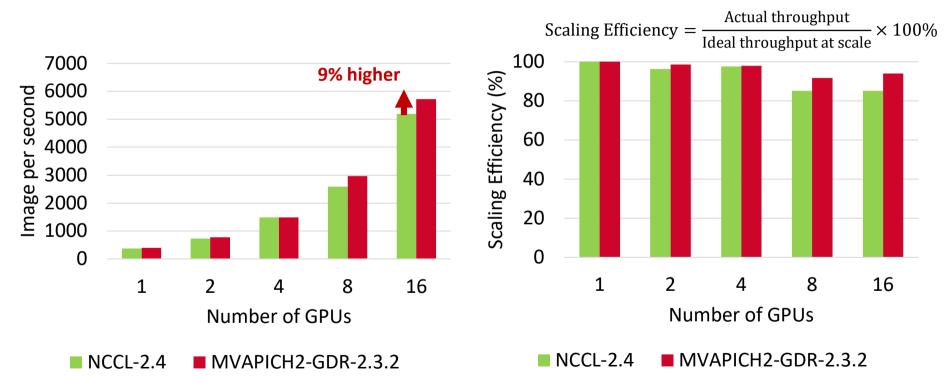
Faster Allreduce in the proposed MPI-Opt implemented in MVAPICH2-GDR

Faster (near-ideal) DNN Training speed-ups in TensorFlow-Horovod

A. A. Awan, J. Bedorf, C.-H. Chu, H. Subramoni and D. K. Panda, "Scalable Distributed DNN Training using TensorFlow and CUDA-Aware MPI: Characterization, Designs, and Performance Evaluation", CCGrid '19. <u>https://arxiv.org/abs/1810.11112</u>

Data Parallel Training with TF and MVAPICH2 on DGX-2

ResNet-50 Training using TensorFlow benchmark on 1 DGX-2 node (16 Volta GPUs)



Platform: Nvidia DGX-2 system (16 Nvidia Volta GPUs connected with NVSwitch), CUDA 9.2

Network Based Computing Laboratory

OSU Booth - SC '18

Data Parallel Training with TF and MVAPICH2 on Summit

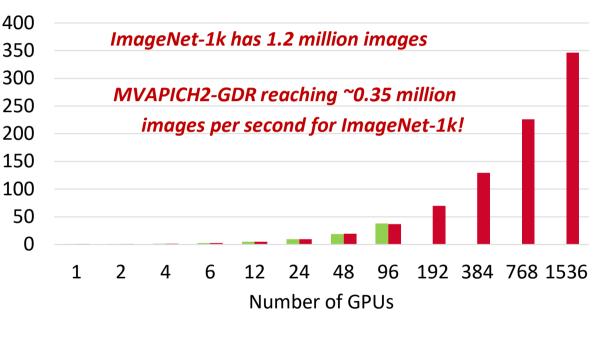
S

Thousand

per second

lmage

- ResNet-50 Training using TensorFlow benchmark on SUMMIT -- 1536 Volta GPUs!
- 1,281,167 (1.2 mil.) images
- Time/epoch = 3.6 seconds
- Total Time (90 epochs)
 = 3.6 x 90 = 332 seconds =
 5.5 minutes!



NCCL-2.4 MVAPICH2-GDR-Next

*We observed errors for NCCL2 beyond 96 GPUs

Platform: The Summit Supercomputer (#1 on Top500.org) – 6 NVIDIA Volta GPUs per node connected with NVLink, CUDA 9.2

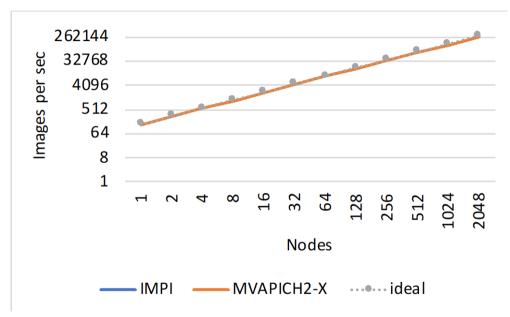
Network Based Computing Laboratory

OSU Booth - SC '18

High-Performance Deep Learning

Data Parallel Training with TF and MVAPICH2 on Frontera

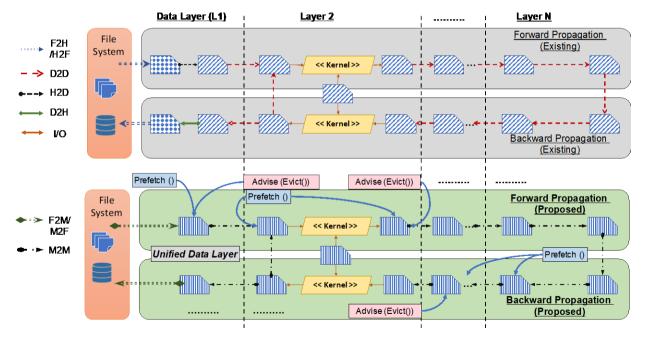
- Scaled TensorFlow to 2048 nodes on Frontera using MVAPICH2 and IntelMPI
- MVAPICH2 and IntelMPI give similar performance for DNN training
- Report a peak of 260,000 images/sec on 2048 nodes
- On 2048 nodes, ResNet-50 can be trained in 7 minutes!



*Jain et al., "Scaling TensorFlow, PyTorch, and MXNet using MVAPICH2 for High-Performance Deep Learning on Frontera", DLS '19 (in conjunction with SC '19).

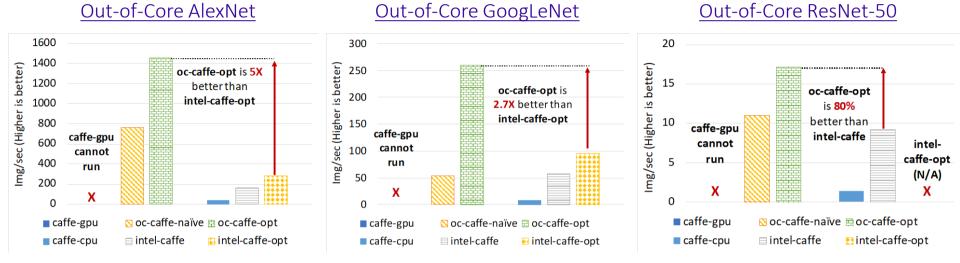
Out-of-core DNN Training

- What if your Neural Net is bigger than the GPU memory (out-of-core)?
 - Use our proposed Unified Memory solution called OC-DNN :-)



A. A. Awan et al., "OC-DNN: Exploiting Advanced Unified Memory Capabilities in CUDA 9 and Volta GPUs for Out-of-Core DNN Training", HiPC'18

Performance Benefits of OC-Caffe

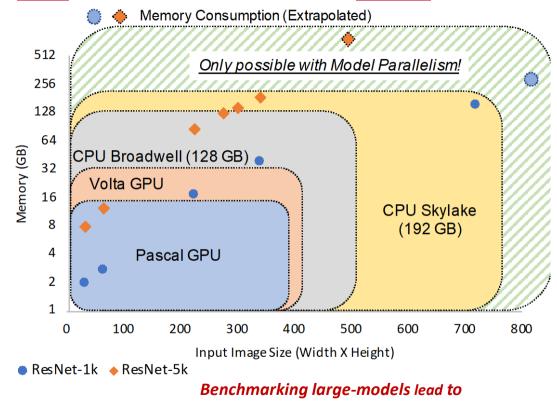


- Out-of-Core workloads no good baseline to compare
 - Easiest fallback is to use CPU -> A lot more CPU memory available than GPU memory
- OC-Caffe-Optimized (Opt) designs provide much better than CPU/Optimized CPU designs!
 - DNN depth is the major cause for slow-downs ightarrow significantly more intra-GPU communication

A. A. Awan et al., "OC-DNN: Exploiting Advanced Unified Memory Capabilities in CUDA 9 and Volta GPUs for Out-of-Core DNN Training", HiPC'18

HyPar-Flow: <u>Hy</u>brid <u>Par</u>allelism for Tensor<u>Flow</u>

- Why Hybrid parallelism?
 - Data Parallel training has
 limits! →
- We propose HyPar-Flow
 - An easy to use Hybrid parallel training framework
 - Hybrid = Data + Mode
 - Supports Keras models and exploits TF 2.0 Eager Execution
 - Exploits MPI for Point-topoint and Collectives

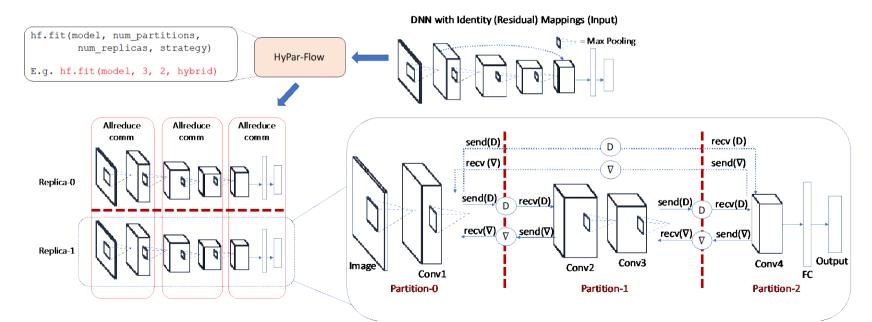


better insights and ability to develop new approaches!

*Awan et al., "HyPar-Flow: Exploiting MPI and Keras for Hybrid Parallel Training of TensorFlow models", arXiv '19. https://arxiv.org/pdf/1911.05146.pdf

HyPar-Flow: Design Overview

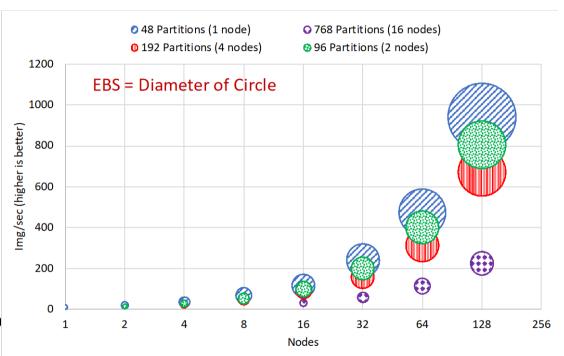
- HyPar-Flow: easy to use Hybrid parallel training framework
 - Supports Keras models and exploits TF 2.0 Eager Execution
 - Exploits MPI Pt-to-pt and Collectives for communication



*Awan et al., "HyPar-Flow: Exploiting MPI and Keras for Hybrid Parallel Training of TensorFlow models", arXiv '19. https://arxiv.org/pdf/1911.05146.pdf **Network Based Computing Laboratory High-Performance Deep Learning** OSU Booth - SC '18

HyPar-Flow (HF): Hybrid Parallelism for TensorFlow

- CPU based results
 - AMD EPYC
 - Intel Xeon
- Excellent speedups for
 - VGG-19
 - ResNet-110
 - ResNet-1000 (1k layers)
- Able to train "future" models
 - E.g. ResNet-5000 (a synthetic 5000-layer model we benchmarked)



110x speedup on 128 Intel Xeon Skylake nodes (TACC Stampede2 Cluster)

*Awan et al., "HyPar-Flow: Exploiting MPI and Keras for Hybrid Parallel Training of TensorFlow models", arXiv '19. https://arxiv.org/pdf/1911.05146.pdf

Network Based Computing Laboratory

OSU Booth - SC '18

High-Performance Deep Learning

Agenda

- Introduction
- Research Challenges: Exploiting HPC for Deep Learning
- Proposed Solutions
- Conclusion

Conclusion

- Deep Learning on the rise
- Single node is not enough
- Focus on distributed Deep Learning many open challenges!
- MPI offers a great abstraction for communication in DNN Training
- A co-design of DL frameworks and communication runtimes will be required to make DNN Training highly scalable
- Various parallelization strategies like data, model, and hybrid to address diversity of DNN architectures and Hardware architectures

Thank You!

awan.10@osu.edu

http://web.cse.ohio-state.edu/~awan.10

Network-Based Computing Laboratory http://nowlab.cse.ohio-state.edu/

High Performance Deep Learning <u>http://hidl.cse.ohio-state.edu/</u>

The High-Performance Deep Learning Project <u>http://hidl.cse.ohio-state.edu/</u>

The High-Performance MPI/PGAS Project http://mvapich.cse.ohio-state.edu/

Network Based Computing Laboratory

OSU Booth - SC '18