Accelerating Spark and Dask using MVAPICH2

Talk at OSU Booth SC ’22

by

Aamir Shafi
Network Based Computing Laboratory
The Ohio State University
Shafi.16@osu.edu
Presentation Outline

• The Landscape of Big Data Frameworks
• Overview of the Apache Spark Project
• Overview of the Dask Project
• MPI4Spark: Using MVAPICH2 to Optimize Apache Spark
• MPI4Dask: Using MVAPICH2 to Optimize Dask
• Summary
Overview of Big Data Framework

• Some of the popular Big Data processing frameworks include Apache Spark, Dask, Ray

• **Apache Spark** is an in-memory data processing framework that is written in Scala and Java:
 – Has support for Python using PySpark

• **Dask** is a task-based distributed computing framework that scales Python applications from laptops to high-end systems

• **Motivation** of this work:
 – The support for efficient execution on high-speed interconnects is lagging:
 • Vanilla Spark has no support (still relies on TCP/IP based sockets via Netty)
 • Dask provides two communication devices: TCP/IP and UCX

• **The main goal** of this work is to utilize the MVAPICH2 library for optimizing communication in Spark and Dask:
 – This allows exploiting supported high-speed interconnects – like InfiniBand, Omni Path, Slingshot, and others – in Big Data ecosystems
Presentation Outline

• The Landscape of Big Data Frameworks

• **Overview of the Apache Spark Project**
 • Overview of the Dask Project
 • MPI4Spark: Using MVAPICH2 to Optimize Apache Spark
 • MPI4Dask: Using MVAPICH2 to Optimize Dask

• Summary
The Apache Spark Framework

- An in-memory data-processing framework
 - Iterative machine learning jobs
 - Interactive data analytics
 - Scala based Implementation
 - Standalone, YARN, Mesos
- A unified engine to support Batch, Streaming, SQL, Graph, ML/DL workloads
- Scalable and communication intensive
 - Wide dependencies between Resilient Distributed Datasets (RDDs)
 - MapReduce-like shuffle operations to repartition RDDs
 - Sockets based communication

http://spark.apache.org
RDD Programming Model in Spark

- **Key idea: Resilient Distributed Datasets (RDDs)**
 - Immutable distributed collections of objects that can be cached in memory across cluster nodes
 - Created by transforming data in stable storage using data flow operators (map, filter, groupBy, ...)
 - Manipulated through various parallel operators
 - Automatically rebuilt on failure
 - rebuilt if a partition is lost

- **Interface**
 - Clean language-integrated API in Scala (Python & Java)
 - Can be used *interactively* from Scala console
RDD Operations

Transformations
(defined a new RDD)

- `map`
- `filter`
- `sample`
- `union`
- `groupByKey`
- `reduceByKey`
- `sortByKey`
- `join`
- ...

Actions
(return a result to driver)

- `reduce`
- `collect`
- `count`
- `first`
- `Take`
- `countByKey`
- `saveAsTextFile`
- `saveAsSequenceFile`
- ...

More Information:
- https://spark.apache.org/docs/latest/programming-guide.html#transformations
- https://spark.apache.org/docs/latest/programming-guide.html#actions
Presentation Outline

• The Landscape of Big Data Frameworks
• Overview of the Apache Spark Project
• **Overview of the Dask Project**
 • MPI4Spark: Using MVAPICH2 to Optimize Apache Spark
 • MPI4Dask: Using MVAPICH2 to Optimize Dask
• Summary
Introduction to Dask

• Dask is a popular task-based distributed computing framework:
 – Scales Python applications from laptops to high-end systems
 – Builds a task-graph that is executed lazily on parallel hardware
 – Natively extends popular data processing libraries like numPy, Pandas

• Dask Distributed library supports parallel and distributed execution:
 – Built using the asyncio package that allows execution of asynchronous/non-blocking/concurrent operations called coroutines:
 • These are defined using async and invoked using await
 – Dask Distributed library originally has two communication backends:
 • TCP: Tornado-based
 • UCX: Built using a Cython wrapper called UCX-Py
Dask Distributed Execution Model

- Key characteristics:
 1. Scalability
 2. Elasticity
 3. Support for coroutines
 4. Serialization/De-serialization to data to/from GPU memory
Running Dask Programs

Dask way: Using Cluster Objects

- Clusters are pre-defined utility classes to help with bootstrapping Dask on different environments:
 - Dask-CUDA provides LocalCUDACluster, DGX
 - Dask-Jobqueue provides PBSCluster, SLURMCluster, LSFCluster, KubeCluster, ECSCluster, YARNCluster

- Steps
 - Step 1: Start the Cluster
 - Step 2: Start client
 - Step 3: Submit work to workers through client

MPI way: Using dask-mpi

- Using dask-mpi, start an MPI job where:
 - Scheduler (rank 0)
 - Client (rank 1)
 - Workers (>= 2)
Presentation Outline

• The Landscape of Big Data Frameworks
• Overview of the Apache Spark Project
• Overview of the Dask Project
• MPI4Spark: Using MVAPICH2 to Optimize Apache Spark
• MPI4Dask: Using MVAPICH2 to Optimize Dask
• Summary
MPI4Spark: Using MVAPICH2 to Optimize Apache Spark

- The main motivation of this work is to utilize the communication functionality provided by MVAPICH2 in the Apache Spark framework.
- MPI4Spark relies on Java bindings of the MVAPICH2 library.
- Spark’s default ShuffleManager relies on Netty for communication:
 - Netty is a Java New I/O (NIO) client/server framework for event-based networking applications.
 - The key idea is to utilize MPI-based point-to-point communication inside Netty.
MPI4Spark: Optimizing the Communication (Shuffle) Phase

- Dataflow for two executors
 - One of the executors performs a reduce task that requires fetching of remote blocks

1. The reduce task starts with reading records inside of ShuffleReader

2. ShuffleBlockFetcherIterator is used to fetch data blocks locally or remotely

3. When remote fetches take place, the ShuffleBlockFetcherIterator will send requests to the underlying NettyBlockTransferService

4. MPI-based Netty will then be used to communicate the remote data block using the ShuffleBlockResolver
MPI4Spark Release

- MPI4Spark 0.1 release adds support for high-performance MPI communication to Spark:
 - Can be downloaded from: http://hibd.cse.ohio-state.edu

- Features:
 - (NEW) Based on Apache Spark 3.3.0
 - (NEW) Compliant with user-level Apache Spark APIs and packages
 - (NEW) High performance design that utilizes MPI-based communication
 - Utilizes MPI point-to-point operations
 - Relies on MPI Dynamic Process Management (DPM) features for launching executor processes
 - (NEW) Built on top of the MVAPICH2-J Java bindings for MVAPICH2 family of MPI libraries
 - (NEW) Tested with
 - OSU HiBD-Benchmarks, GroupBy and SortBy
 - Intel HiBench Suite, Micro Benchmarks, Machine Learning and Graph Workloads
 - Mellanox InfiniBand adapters (EDR and HDR 100G and 200G)
 - HPC systems with Intel OPA interconnects
 - Various multi-core platforms
The above are weak-scaling performance numbers of OHB benchmarks (GroupByTest and SortByTest) executed on the TACC Frontera system.

- Speed-ups for the overall total execution time for 448GB with GroupByTest is 4.1x and 2.2x compared to IPoIB and RDMA, and for SortByTest the speed-ups are 3.8x and 1.5x, respectively.
- Speed-ups for the shuffle read stage for 112GB with GroupByTest are 13x compared with IPoIB and 5.6x compared to RDMA, while for SortByTest the speed-ups are 12.8x and 3.2x, respectively.

The above are **strong-scaling** performance numbers of OHB benchmarks (GroupByTest and SortByTest) also executed on the TACC Frontera System.

- Speed-ups for the overall total execution time for 8 workers with GroupByTest is **3.7x** and **2.1x** compared to IPoIB and RDMA, and for SortByTest the speed-ups are **3.5x** and **1.4x**, respectively.
- Speed-ups for the shuffle read stage for 8 workers GroupByTest between MPI4Spark and IPoIB is **7.6x** and between MPI4Spark and RDMA is **4x**, while for SortByTest the speed-ups are **7.3x** and **1.8x**, respectively.

Performance Evaluation with Intel HiBench Workloads

• This evaluation was done on the TACC Frontera (IB) and the TACC Stampede2 (OPA) Systems

• This illustrates the portability of MPI4Spark on different interconnects

• We see a speed-up for the LR machine learning workload on Stampede2 of about $2.2x$

• Speed-ups for the LDA machine learning workload on Frontera are $1.7x$ and $1.66x$ compared with IPoIB and RDMA, respectively

MPI4Spark: Relative Speedups to Vanilla Spark and RDMA-Spark on Three HPC Systems

<table>
<thead>
<tr>
<th>System Name</th>
<th>Nodes Used</th>
<th>Processor</th>
<th>Cores Used</th>
<th>Sockets</th>
<th>Cores/socket</th>
<th>RAM</th>
<th>Interconnect</th>
</tr>
</thead>
<tbody>
<tr>
<td>TACC Frontera</td>
<td>34</td>
<td>Xeon Platinum</td>
<td>1792</td>
<td>2</td>
<td>28</td>
<td>192 GB</td>
<td>HDR (100G)</td>
</tr>
<tr>
<td>RI2 (OSU System)</td>
<td>14</td>
<td>Xeon Broadwell</td>
<td>336</td>
<td>2</td>
<td>14</td>
<td>128 GB</td>
<td>EDR (100G)</td>
</tr>
<tr>
<td>MRI (OSU System)</td>
<td>12</td>
<td>AMD EPYC 7713</td>
<td>1280</td>
<td>2</td>
<td>64</td>
<td>264 GB</td>
<td>200 Gb/sec (4X HDR)</td>
</tr>
</tbody>
</table>

OHB GroupByTest

- **Vanilla Spark TACC Frontera**: 3.65x
- **Vanilla Spark MRI (OSU System)**: 1.88x
- **Vanilla Spark RI2 (OSU System)**: 3.52x

OHB SortByTest

- **Vanilla Spark TACC Frontera**: 3.52x
- **Vanilla Spark MRI (OSU System)**: 1.86x
- **Vanilla Spark RI2 (OSU System)**: 1.86x
Presentation Outline

- The Landscape of Big Data Frameworks
- Overview of the Apache Spark Project
- Overview of the Dask Project
- MPI4Spark: Using MVAPICH2 to Optimize Apache Spark
 - MPI4Dask: Using MVAPICH2 to Optimize Dask
- Summary
MPI4Dask: MPI backend for Dask

- Dask Distributed library historically had two communication backends:
 - TCP: Tornado-based
 - UCX: Built using a GPU-aware Cython wrapper called UCX-Py

- Designed and implemented **MPI4Dask** communication device:
 - MPI-based backend for Dask
 - Implemented using mpi4py (Cython wrappers) and MVAPICH2-GDR
 - Uses Dask-MPI to bootstrap execution of Dask programs
 - Implements communication coroutines for point-to-point MPI functions
 - Provides mapping of process endpoints to MPI ranks
MPI4Dask in the Dask Architecture

- Dask Bag
- Dask Array
- Dask DataFrame
- Delayed
- Future

Task Graph

Distributed

- Scheduler
- Worker
- Client

Comm Layer

- tcp.py
- ucx.py

High Performance Computing Hardware

- TCP
- UCX

Laptops/Desktops

Dask-MPI

Dask-CUDA

Dask-Jobqueue

Dask

- MPI4Dask
- mpi4py
- MVAPICH2-GDR

UCX

UCX-Py (Cython wrappers)

TCP

High Performance Computing Hardware

OSU Booth - SC ’22

Network Based Computing Laboratory
MPI4Dask Release

- MPI4Dask 0.2 release adds support for high-performance MPI communication to Dask:
 - Can be downloaded from: http://hibd.cse.ohio-state.edu

- Features:
 - Based on Dask Distributed 2021.01.0
 - Compliant with user-level Dask APIs and packages
 - Support for MPI-based communication in Dask for cluster of GPUs
 - Implements point-to-point communication co-routines
 - Efficient chunking mechanism implemented for large messages
 - (NEW) Built on top of mpi4py over the MVAPICH2, MVAPICH2-X, and MVAPICH2-GDR libraries
 - (NEW) Support for MPI-based communication for CPU-based Dask applications
 - Supports starting execution of Dask programs using Dask-MPI
 - Tested with
 - (NEW) CPU-based Dask applications using numPy and Pandas data frames
 - (NEW) GPU-based Dask applications using cuPy and cuDF
 - Mellanox InfiniBand adapters (FDR and EDR)
 - Various multi-core platforms
 - NVIDIA V100 and Quadro RTX 5000 GPUs

- MPI4Dask 0.3 release (upcoming)
Benchmark #1: Sum of cuPy Array and its Transpose (TACC Frontera GPU Subsystem)

https://arxiv.org/abs/2101.08878

MPI4Dask 0.2 release
(http://hibd.cse.ohio-state.edu)

1.71x better on average
Benchmark #2: cuDF Merge (TACC Frontera GPU Subsystem)

2.91x better on average

https://arxiv.org/abs/2101.08878

MPI4Dask 0.2 release
(http://hibd.cse.ohio-state.edu)
Benchmark #2: cuDF Merge Operation (Wilkes-3 System)

- GPU-based Operation: \(\text{ddf1} \cdot \text{merge} \left(\text{ddf2} \right) \), using persist
 - Merge two GPU data frames, each with length of 32*1e8
 - Compute() will gather the data from all worker nodes to the client node, and make a copy on the host memory.
 - Persist() will leave the data on its current nodes without any gathering

Wilke3 GPU System:
- 80 nodes
- 2x AMD EPYC 7763 64-core Processors
- 1000 GiB RAM
- Dual-rail Mellanox HDR200 IB
- 4x NVIDIA A100 SXM4 80 GB

In the persist mode, MPI4Dask is:
- 4.94x faster than UCX
- 26.85x faster than TCP

MPI4Dask 0.3* (soon to be released), Dask 2022.8.1, Distributed, 2022.8.1, MVAPICH2-GDR 2.3.7, UCX v1.13.1, UCX-py 0.27.00
Benchmark #3: Matrix Dot Operation (Wilkes-3 System)

- GPU-based Operation: \(a \cdot \text{dot}(b) \), using persist()
 - Dot multiply two matrices, each with size of 4GB
 - Compute() will gather the data from all worker nodes to the client node, and make a copy on the host memory.
 - Persist() will leave the data on its current nodes without any gathering

Wilke3 GPU System:
- 80 nodes
- 2x AMD EPYC 7763 64-core Processors
- 1000 GiB RAM
- Dual-rail Mellanox HDR200 IB
- 4x NVIDIA A100 SXM4 80 GB

 Execution Time

<table>
<thead>
<tr>
<th>Number of Dask Workers</th>
<th>TCP</th>
<th>UCX</th>
<th>MPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On average, MPI4Dask is:
- 4.24x faster than UCX
- 10.02x faster than TCP

 Multiplication Throughput

<table>
<thead>
<tr>
<th>Number of Dask Workers</th>
<th>TCP</th>
<th>UCX</th>
<th>MPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On average, MPI4Dask 0.3* (soon to be released), Dask 2022.8.1, Distributed, 2022.8.1, MVAPICH2-GDR 2.3.7, UCX v1.13.1, UCX-py 0.27.00

Network Based Computing Laboratory
OSU Booth - SC’22
Presentation Outline

• The Landscape of Big Data Frameworks
• Overview of the Apache Spark Project
• Overview of the Dask Project
• MPI4Spark: Using MVAPICH2 to Optimize Apache Spark
• MPI4Dask: Using MVAPICH2 to Optimize Dask

• Summary
Related Publications

• Spark Meets MPI: Towards High-Performance Communication Framework for Spark using MPI

• Efficient MPI-based Communication for GPU-Accelerated Dask Applications A. Shafi, J. Hashmi,
 H. Subramoni, D. Panda The 21st IEEE/ACM International Symposium on Cluster, Cloud and

• Blink: Towards Efficient RDMA-based Communication Coroutines for Parallel Python
 Applications A. Shafi, J. Hashmi, H. Subramoni, D. Panda 27th IEEE International Conference on
 High Performance Computing, Data, and Analytics, Dec 2020.
Summary

• This talk presented MPI4Spark and MPI4Dask
 – These are optimized versions of Spark and Dask, respectively, that exploit high-performance communication provided by the MVAPICH2 library

• Both software stacks can execute on all MVAPICH2 support low-latency and high-bandwidth interconnects including InfiniBand, Omni Path, Slingshot, etc.

• Performance evaluation of MPI4Spark and MPI4Dask showed that these designs outperform the state-of-the-art communication devices in Spark and Dask framework

• MPI4Spark and MPI4Dask are available for download from the HiBD project website:
 – http://hibd.cse.ohio-state.edu
Thank You!

shafi.16@cse.ohio-state.edu

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/
MPI4Dask: Bootstrapping and Dynamic Connectivity

• Several ways to start Dask programs:
 – Manual
 – Utility classes:
 • LocalCUDACluster, SLURMCluster, SGECluster, PBCCluster, and others
• MPI4Dask uses the Dask-MPI to bootstrap execution of Dask programs
• Dynamic connectivity is established using the asyncio package in MPI4Dask:
 – Scheduler and workers listen for incoming connections by calling asyncio.start_server()
 – Workers and client connect using asyncio.open_connection()
MPI4Dask: Point-to-point Communication Coroutines

- Implements communication coroutines for point-to-point MPI functions:
 - Using mpi4py (Cython wrappers) and MVAPICH2-GDR

- mpi4py provides two flavors of point-to-point communication functions:
 - `Send()/Recv()` – for exchanging data in buffers (faster and used in MPI4Dask)
 - `send()/recv()` – for communicating Python objects (pickle/unpickle)
 - GPU buffers implement the `__cuda_array_interface__`

- Implemented chunking mechanism for large messages

- The send and receive communication coroutines are as follows:

```python
request = comm.Isend([buf, size], dest, tag)
status = request.Test()
while status is False:
    await asyncio.sleep(0)
    status = request.Test()
```

```python
request = comm.Irecv([buf, size], src, tag)
status = request.Test()
while status is False:
    await asyncio.sleep(0)
    status = request.Test()
```
Latency/Throughput Comparison (UCX-Py vs. MPI4Dask)

- **UCX-Py (Polling Mode)**
- **UCX**
- **MPI4Dask**
- **MVAPICH2-GDR**

Latency (us)
- **Message Size (Bytes)**: 1, 4, 16, 64, 256, 1K, 4K, 16K, 64K, 256K

Throughput (Gbps)
- **Message Size (Bytes)**: 512K, 1MB, 2MB, 4MB, 8MB, 16MB, 32MB, 64MB, 128MB

- **6x better for 1 byte**
- **4x better**
CPU-to-CPU Communication Comparison

- **MVAPICH2**
- **MPI4Dask**
- **UCX**
- **UCX-Py**

Latency (us)

Message Size (Bytes)

- 4.6x better for 1 byte

Throughput (Gbps)

Message Size (Bytes)

- 2.3x better

UCX: v1.8.0, CUDA: 10.2, UCX-Py: v0.17, MPI4Dask: 0.2, and MVAPICH2: 2.3.5
Benchmark #1: Sum of cuPy Array and its Transpose (RI2)

3.47x better on average

6.92x better on average

MPI4Dask 0.2 release
(http://hibd.cse.ohio-state.edu)
Benchmark #2: cuDF Merge Operation

3.11x better on average

3.22x better on average

MPI4Dask 0.2 release (http://hibd.cse.ohio-state.edu)
Benchmark #4: Sum of numPy Array and its Transpose (RI2)

1.16x better on average

MPI4Dask 0.2 release
(http://hibd.cse.ohio-state.edu)
Introduction to Big Data Analytics and Trends

• **Big Data** has changed the way people understand and harness the power of data, both in the business and research domains

• Big Data has become one of the most important elements in business analytics

• Big Data and High Performance Computing (HPC) are **converging** to meet large scale data processing challenges

• Running High Performance Data Analysis (HPDA) workloads in the **cloud** is gaining popularity
 - According to the latest OpenStack survey, **27%** of cloud deployments are running HPDA workloads
 - Sometimes also called Data Science
MPI4Spark: Performance of MPI-based Netty

- These figures represent the latency numbers for small and large message sizes
- The performance was analyzed using a ping pong Netty benchmark
- For small messages, we see a speed-up of 25x at 4K
- For large messages, we see a speed-up of 9x at 4MB