

OpenSHMEM NonBlocking Data Movement Operations with MVAPICH2-X: Early Experiences

PGAS Applications Workshop (PAW'16)

by

Khaled Hamidouche*, Jie Zhang*, Karen Tomko+, D.K Panda*

*: The Ohio State University (OSU), +: Ohio Supercomputing Center (OSC)

E-mail: hamidouc@cse.ohio-state.edu

Drivers of Modern HPC Cluster Architectures

High Performance Interconnects -InfiniBand <1usec latency, 200Gbps Bandwidth>

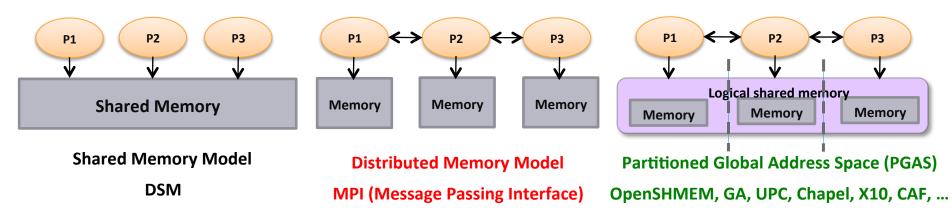
Titan

Multi-core Processors

• Multi-core/many-core technologies

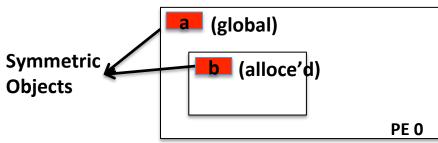
Accelerators / Coprocessors high compute density, high performance/watt >1 TFlop DP on a chip

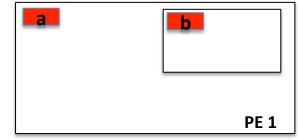
SSD, NVMe-SSD, NVRAM


- Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE)
- Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), NVMe-SSD
- Accelerators (NVIDIA GPGPUs and Intel Xeon Phi)

Tianhe – 2 Network Based Computing Laboratory

Stampede PAW'16

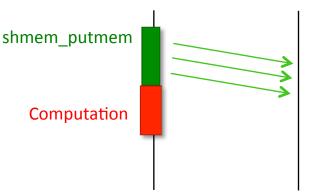

Parallel Programming Models Overview


- Programming models provide abstract machine models
- Models can be mapped on different types of systems
 - e.g. Distributed Shared Memory (DSM), MPI within a node, etc.
- Additionally, OpenMP can be used to parallelize computation within the node
- Each model has strengths and drawbacks suite different problems or applications

The OpenSHMEM Memory Model

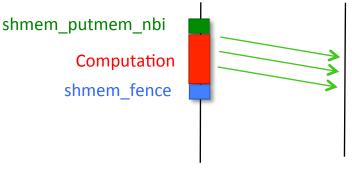
- Symmetric data objects
 - Global Variables
 - Allocated using collective *shmem_malloc, shmem_memalign, shmem_realloc* routine

• Globally addressable – objects have same


Virtual Address Space

- Туре
- Size
- Same virtual address or offset at all PEs
- Address of a remote object can be calculated based on info of local object
- OpenSHMEM 1.3 introduces Non-Blocking Data Movement Operations

PAW'16


Non-Blocking Data Movement Operations

- Blocking operation => Optimize for latency
 - Buffer reuse after returning from the call
- Non-Blocking operation => Optimize Computation/ Communication overlap
 - Return as soon as we post the request
 - Completion is ensured later on a completion/ synchronization call
 - Buffer reuse after completion
 - API extension with _nbi (ex: shmem_putmem_nbi)
 - shmem_fence/Shmem_barrier. Complete all previous operations

Non-Blocking Semantics

Blocking Semantics

Outline

- Introduction
- Contributions
- Alternative Designs
- Performance Evaluation
- Conclusions and Future Work

Contributions

- Propose high-performance designs and implementations of OpenSHMEM NBI operations on top of the MVAPICH2-X library.
- Extend OMB with new NBI benchmarks for evaluating OpenSHMEM 1.3 NBI operations in a standardized manner.
- Design communication kernels including 3D stencil and alltoall patterns using OpenSHMEM.
- Demonstrate the benefits and impact of OpenSHMEM NBI operations on both latency and overlap metrics.

Outline

- Introduction
- Contributions
- Alternative Designs
- Performance Evaluation
- Conclusions and Future Work

Overview of the MVAPICH2 Project

- High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)
 - MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Started in 2001, First version available in 2002
 - MVAPICH2-X (MPI + PGAS), Available since 2011
 - Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014
 - Support for Virtualization (MVAPICH2-Virt), Available since 2015
 - Support for Energy-Awareness (MVAPICH2-EA), Available since 2015
 - Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015
 - Used by more than 2,675 organizations in 83 countries
 - More than 399,000 (> 0.39 million) downloads from the OSU site directly
 - Empowering many TOP500 clusters (Jun '16 ranking)
 - 12th ranked 519,640-core cluster (Stampede) at TACC
 - 15th ranked 185,344-core cluster (Pleiades) at NASA
 - 31st ranked 76,032-core cluster (Tsubame 2.5) at Tokyo Institute of Technology and many others
 - Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)
 - <u>http://mvapich.cse.ohio-state.edu</u>
- Empowering Top500 systems for over a decade
 - System-X from Virginia Tech (3rd in Nov 2003, 2,200 processors, 12.25 TFlops) ->
 - Stampede at TACC (12th in Jun'16, 462,462 cores, 5.168 Plops)

Network Based Computing Laboratory

MVAPICH2-X for Hybrid MPI + PGAS Applications

High Performance Parallel Programming Models									
MPI Message Passing Interface (UPC			PGAS enSHMEM, CA	F, UPC++)	Hybrid MPI + X (MPI + PGAS + OpenMP/Cilk)				
High Performance and Scalable Unified Communication Runtime Diverse APIs and Mechanisms									
Optimized Point- to-point Primitives	Remote Memory Access	Active Messages	Collectives Algorithms (Blocking and Non-Blocking)	Scalable Job Startup	Fault Tolerance	Introspection & Analysis with OSU INAM			

Support for Modern Networking Technologies (InfiniBand, iWARP, RoCE, Omni-Path...) Support for Modern Multi-/Many-core Architectures (Intel-Xeon, OpenPower...)

- Unified communication runtime for MPI, UPC, UPC++, OpenSHMEM, CAF
 - Available since 2012 (starting with MVAPICH2-X 1.9)
 - <u>http://mvapich.cse.ohio-state.edu</u>

- Feature Highlights
 - Supports MPI(+OpenMP), OpenSHMEM, UPC, CAF, UPC++, MPI(+OpenMP) + OpenSHMEM, MPI(+OpenMP) + UPC
 - MPI-3 compliant, OpenSHMEM v1.3 standard compliant, UPC v1.2 standard compliant (with initial support for UPC 1.3), CAF 2008 standard (OpenUH), UPC++
 - Scalable Inter-node and intra-node communication point-topoint and collectives

OpenSHMEM Design in MVAPICH2-X

OpenSHMEM API										
Memory Management	Data Movement		Atomics	Collectives						
Minimal Set of Internal API										
Communication	АРІ	-	tric Memory gement API							
MVAPICH2-X Runtime										
Active Messages	One-sided Operations		emote omic Ops	Enhanced Registration Cac	he					
InfiniBand, RoCE, iWARP										

- OpenSHMEM Stack based on OpenSHMEM Reference Implementation
- OpenSHMEM Communication over MVAPICH2-X Runtime
 - Uses active messages, atomic and one-sided operations and remote registration cache

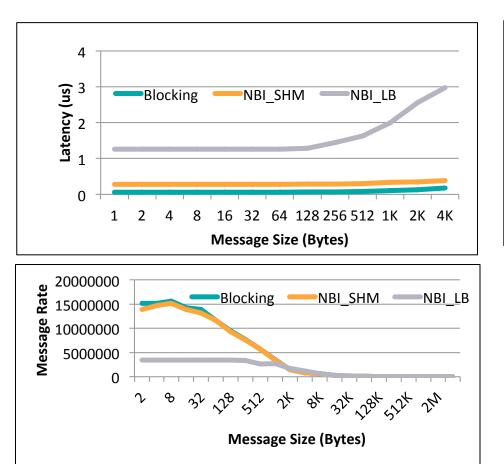
J. Jose, K. Kandalla, M. Luo and D. K. Panda, Supporting Hybrid MPI and OpenSHMEM over InfiniBand: Design and Performance Evaluation, Int'l Conference on Parallel Processing (ICPP '12), September 2012

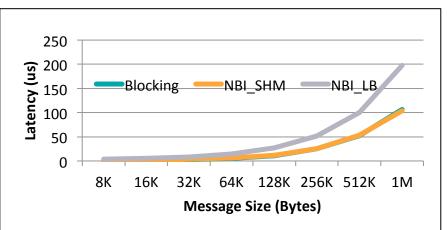
Intra-node Alternative Designs

- Shared Memory based
 - Symmetric Memory (heap) in shared memory
 - Direct copy from source to destination
 - Latency optimized (no overlap)
- CMA based
 - Shared memory is not available
 - Direct copy (Zero-copy)
 - Latency optimized (no overlap)
- IB Loopback based
 - Offload the copy operations to an external engine (IB)
 - Exchange the l_key/r-key during initialization
 - Overlap optimized (return as soon as we post the IB operation)
- On-load engine based (Work in progress)
 - Kernel based helper threads
 - Offload the copy operations to helper threads (Similar to CMA)
 - Optimized for both Latency and Overlap

Inter-nodes Alternative Designs

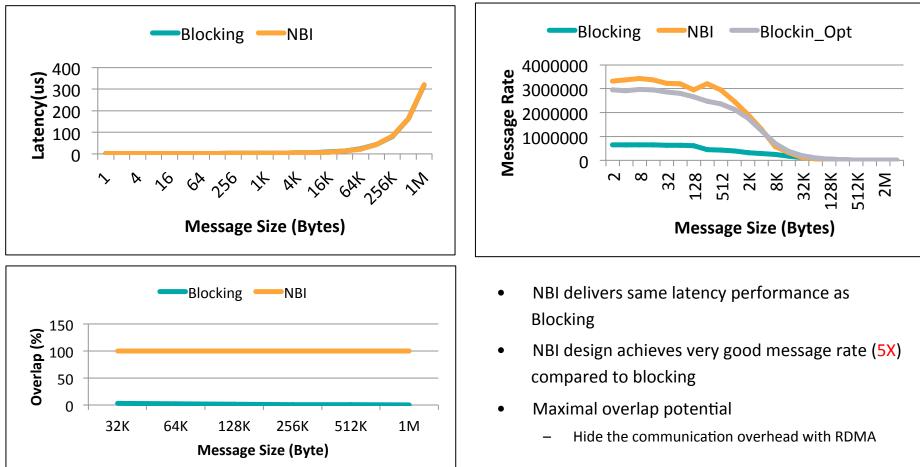
- List-based design
 - On the call: Create and en-queue an internal request
 - Associate an IB Completion Event with a request
 - In the progress engine: De-queue and delete a completed request
 - During completion call (Fence): Polls the progress engine until the list is empty
 - Overhead of Create/Delete of the request in Critical path
- Counter-based design
 - Global integer counter
 - On the call: Increment the counter
 - In the progress engine: decrease the counter
 - During completion call: Poll the progress engine until counter==0
 - Minimal overhead in the critical path


Outline

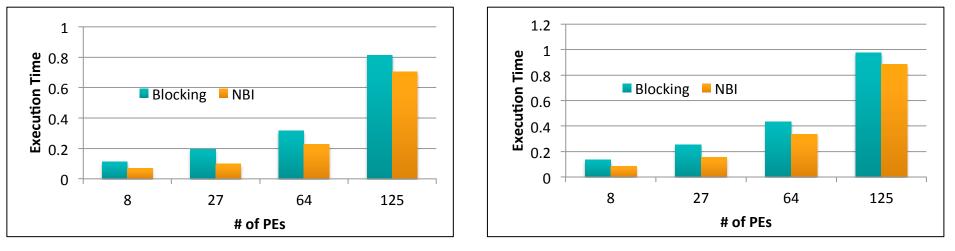

- Introduction
- Contributions
- Alternative Designs
- Performance Evaluation
- Conclusions and Future Work

Experimental Setup

- Stampede System @TACC
 - 16-cores Sandy Bridge nodes
 - Mellanox FDR interconnection
- MVAPICH2-X 2.2RC1
 - Unified Communication Runtime support (UCR)
 - OpenSHMEM 1.3 git branch of the standard implementation
- Extension of OpenSHMEM OMB with
 - NBI pt-pt latency tests (for put and get)
 - Message rate benchmarks
 - Overlap Benchmarks
- Redesigned All-to-All and 3D-Stencil benchmarks with NBI interface


Intra-node Evaluation

- LB-based design has overhead in latency
- SHM-based design achieves very good message rate (3X) improvements compared to LB-design
- Overhead in latency for small message
 - Software overhead due to synchronization operation


Inter-node Evaluation

Network Based Computing Laboratory

17

3D-Stencil Communication Kernel Evaluation

Small Input Size (512 Byte)

Large Input Size (2 KByte)

- 50%, 30% and 15% performance improvement on 27, 64 and 125 cores
- Overlap benefits
 - Small message: both computation/Communication and Communication/Communication overlap

Outline

- Introduction
- Contributions
- Alternative Designs
- Performance Evaluation
- Conclusions and Future Work

Conclusions

- Highlighted the alternative approaches for designing NBI operations
 - Both intra and internode operation on RDMA networks
- Demonstrate the benefits of OpenSHMEM NBI operations
 - Message Rate, Overlap
- Evaluate the impact of such semantics/designs at application level
- The support will be available with the next release of MVAPICH2-X
- The new Benchmarks will be available with the next release of OMB

Thank You!

Network-Based Computing Laboratory http://nowlab.cse.ohio-state.edu/

The MVAPICH Project http://mvapich.cse.ohio-state.edu/

hamidouc@cse.ohio-state.edu

PAW'16