
High Performance and Scalable MPI+X Library for
Emerging HPC Clusters

Dhabaleswar K. (DK) Panda

The Ohio State University

E-mail: panda@cse.ohio-state.edu

http://www.cse.ohio-state.edu/~panda

Talk at Intel HPC Developer Conference (SC ‘16)

by

Khaled Hamidouche

The Ohio State University

E-mail: hamidouc@cse.ohio-state.edu

http://www.cse.ohio-state.edu/~hamidouc

http://www.cse.ohio-state.edu/~panda
http://www.cse.ohio-state.edu/~potluri

Intel HPC Dev Conf (SC ‘16) 2Network Based Computing Laboratory

High-End Computing (HEC): ExaFlop & ExaByte

100-200

PFlops in

2016-2018

1 EFlops in

2023-2024?

10K-20K

EBytes in

2016-2018

40K EBytes

in 2020 ?

ExaFlop & HPC
•

ExaByte & BigData
•

Intel HPC Dev Conf (SC ‘16) 3Network Based Computing Laboratory

Trends for Commodity Computing Clusters in the Top 500
List (http://www.top500.org)

0
10
20
30
40
50
60
70
80
90
100

0
50

100
150
200
250
300
350
400
450
500

P
er

ce
n

ta
ge

 o
f

C
lu

st
e

rs

N
u

m
b

er
 o

f
C

lu
st

er
s

Timeline

Percentage of Clusters

Number of Clusters

85%

Intel HPC Dev Conf (SC ‘16) 4Network Based Computing Laboratory

Drivers of Modern HPC Cluster Architectures

Tianhe – 2 Titan Stampede Tianhe – 1A

• Multi-core/many-core technologies

• Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE)

• Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), NVMe-SSD

• Accelerators (NVIDIA GPGPUs and Intel Xeon Phi)

Accelerators / Coprocessors
high compute density, high

performance/watt
>1 TFlop DP on a chip

High Performance Interconnects -
InfiniBand

<1usec latency, 100Gbps Bandwidth>Multi-core Processors SSD, NVMe-SSD, NVRAM

Intel HPC Dev Conf (SC ‘16) 5Network Based Computing Laboratory

Designing Communication Libraries for Multi-Petaflop and
Exaflop Systems: Challenges

Programming Models
MPI, PGAS (UPC, Global Arrays, OpenSHMEM), CUDA, OpenMP,

OpenACC, Cilk, Hadoop (MapReduce), Spark (RDD, DAG), etc.

Application Kernels/Applications

Networking Technologies
(InfiniBand, 40/100GigE,

Aries, and OmniPath)

Multi/Many-core
Architectures

Accelerators
(NVIDIA and MIC)

Middleware

Co-Design

Opportunities

and

Challenges

across Various

Layers

Performance

Scalability

Fault-

Resilience

Communication Library or Runtime for Programming Models
Point-to-point

Communicatio

n

Collective

Communicatio

n

Energy-

Awareness

Synchronizatio

n and Locks

I/O and

File Systems

Fault

Tolerance

Intel HPC Dev Conf (SC ‘16) 6Network Based Computing Laboratory

Exascale Programming models

Next-Generation Programming models

MPI+X

X= ?

OpenMP, OpenACC, CUDA, PGAS, Tasks….

Highly-Threaded

Systems (KNL)

Irregular

Communications

Heterogeneous

Computing with

Accelerators

• The community believes

exascale programming model

will be MPI+X

• But what is X?

– Can it be just OpenMP?

• Many different environments

and systems are emerging

– Different `X’ will satisfy the

respective needs

Intel HPC Dev Conf (SC ‘16) 7Network Based Computing Laboratory

• Scalability for million to billion processors
– Support for highly-efficient inter-node and intra-node communication (both two-sided and one-sided)

– Scalable job start-up

• Scalable Collective communication
– Offload

– Non-blocking

– Topology-aware

• Balancing intra-node and inter-node communication for next generation nodes (128-1024 cores)
– Multiple end-points per node

• Support for efficient multi-threading (OpenMP)

• Integrated Support for GPGPUs and Accelerators (CUDA)

• Fault-tolerance/resiliency

• QoS support for communication and I/O

• Support for Hybrid MPI+PGAS programming (MPI + OpenMP, MPI + UPC, MPI + OpenSHMEM,
CAF, …)

• Virtualization

• Energy-Awareness

MPI+X Programming model: Broad Challenges at Exascale

Intel HPC Dev Conf (SC ‘16) 8Network Based Computing Laboratory

• Extreme Low Memory Footprint
– Memory per core continues to decrease

• D-L-A Framework

– Discover

• Overall network topology (fat-tree, 3D, …), Network topology for processes for a given job

• Node architecture, Health of network and node

– Learn

• Impact on performance and scalability

• Potential for failure

– Adapt

• Internal protocols and algorithms

• Process mapping

• Fault-tolerance solutions

– Low overhead techniques while delivering performance, scalability and fault-tolerance

Additional Challenges for Designing Exascale Software Libraries

Intel HPC Dev Conf (SC ‘16) 9Network Based Computing Laboratory

Overview of the MVAPICH2 Project
• High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Started in 2001, First version available in 2002

– MVAPICH2-X (MPI + PGAS), Available since 2011

– Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014

– Support for Virtualization (MVAPICH2-Virt), Available since 2015

– Support for Energy-Awareness (MVAPICH2-EA), Available since 2015

– Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015

– Used by more than 2,690 organizations in 83 countries

– More than 402,000 (> 0.4 million) downloads from the OSU site directly

– Empowering many TOP500 clusters (Nov ‘16 ranking)

• 1st ranked 10,649,640-core cluster (Sunway TaihuLight) at NSC, Wuxi, China

• 13th ranked 241,108-core cluster (Pleiades) at NASA

• 17th ranked 519,640-core cluster (Stampede) at TACC

• 40th ranked 76,032-core cluster (Tsubame 2.5) at Tokyo Institute of Technology and many others

– Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)

– http://mvapich.cse.ohio-state.edu

• Empowering Top500 systems for over a decade

– System-X from Virginia Tech (3rd in Nov 2003, 2,200 processors, 12.25 TFlops) ->

Sunway TaihuLight at NSC, Wuxi, China (1st in Nov’16, 10,649,640 cores, 93 PFlops)

http://mvapich.cse.ohio-state.edu/

Intel HPC Dev Conf (SC ‘16) 10Network Based Computing Laboratory

• Hybrid MPI+OpenMP Models for Highly-threaded Systems

• Hybrid MPI+PGAS Models for Irregular Applications

• Hybrid MPI+GPGPUs and OpenSHMEM for Heterogeneous
Computing with Accelerators

Outline

Intel HPC Dev Conf (SC ‘16) 11Network Based Computing Laboratory

• Systems like KNL

• MPI+OpenMP is seen as the best fit

– 1 MPI process per socket for Multi-core

– 4-8 MPI processes per KNL

– Each MPI process will launch OpenMP threads

• However, current MPI runtimes are not “efficiently” handling the hybrid

– Most of the application use Funneled mode: Only the MPI processes perform

communication

– Communication phases are the bottleneck

• Multi-endpoint based designs

– Transparently use threads inside MPI runtime

– Increase the concurrency

Highly Threaded Systems

Intel HPC Dev Conf (SC ‘16) 12Network Based Computing Laboratory

• MPI-4 will enhance the thread support

– Endpoint proposal in the Forum

– Application threads will be able to efficiently perform communication

– Endpoint is the communication entity that maps to a thread

• Idea is to have multiple addressable communication entities within a single process

• No context switch between application and runtime => better performance

• OpenMP 4.5 is more powerful than just traditional data parallelism

– Supports task parallelism since OpenMP 3.0

– Supports heterogeneous computing with accelerator targets since OpenMP 4.0

– Supports explicit SIMD and threads affinity pragmas since OpenMP 4.0

MPI and OpenMP

Intel HPC Dev Conf (SC ‘16) 13Network Based Computing Laboratory

• Lock-free Communication

– Threads have their own resources

• Dynamically adapt the number of threads

– Avoid resource contention

– Depends on application pattern and system

performance

• Both intra- and inter-nodes communication

– Threads boost both channels

• New MEP-Aware collectives

• Applicable to the endpoint proposal in MPI-4

MEP-based design: MVAPICH2 Approach

Multi-endpoint Runtime

Request
Handling

Progress
Engine

Comm.
Resources

Management

Endpoint Controller

Collective

Optimized Algorithm
Point-to-Point

MPI/OpenMP Program

MPI Collective

(MPI_Alltoallv,

MPI_Allgatherv...)

*Transparent support

MPI Point-to-Point

(MPI_Isend, MPI_Irecv,

MPI_Waitall...)

*OpenMP Pragma needed

Lock-free Communication Components

M. Luo, X. Lu, K. Hamidouche, K. Kandalla and D. K. Panda, Initial Study of Multi-Endpoint Runtime for MPI+OpenMP Hybrid

Applications on Multi-Core Systems. International Symposium on Principles and Practice of Parallel Programming (PPoPP '14).

Intel HPC Dev Conf (SC ‘16) 14Network Based Computing Laboratory

Performance Benefits: OSU Micro-Benchmarks (OMB) level

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 16 64 256 1K 4K 16K 64K 256K

L
a

te
n

c
y
 (

u
s
)

Message size

Orig Multi-threaded Runtime
Proposed Multi-Endpoint Runtime

Process based Runtime

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 4 16 64 256 1K 2K

L
a

te
n

c
y
 (

u
s
)

Message size

orig
mep

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 4 16 64 256 1K 2K

L
a

te
n

c
y
 (

u
s
)

Message size

orig
mep

Multi-pairs Bcast Alltoallv

• Reduces the latency from 40us to 1.85 us (21X)

• Achieves the same as Processes

• 40% improvement on latency for Bcast on 4,096 cores

• 30% improvement on latency for Alltoall on 4,096 cores

Intel HPC Dev Conf (SC ‘16) 15Network Based Computing Laboratory

Performance Benefits: Application Kernel level

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

CG LU MG

T
im

e
 (

s)

NAS Benchmark with 256 nodes (4,096 cores) CLASS E

Orig
mep

0

5

10

15

2K 4K

Ex
ec

u
ti

o
n

 T
im

e

of cores and input size

P3DFFT

Orig MEP

• 6.3% improvement for MG, 11.7% improvement for CG, and 12.6% improvement for LU on 4,096

cores.

• With P3DFFT, we are able to observe a 30% improvement in communication time and 13.5%

improvement in the total execution time.

Intel HPC Dev Conf (SC ‘16) 16Network Based Computing Laboratory

• On-load approach

– Takes advantage of the idle cores

– Dynamically configurable

– Takes advantage of highly multithreaded cores

– Takes advantage of MCDRAM of KNL processors

• Applicable to other programming models such as PGAS, Task-based, etc.

• Provides portability, performance, and applicability to runtime as well as

applications in a transparent manner

Enhanced Designs for KNL: MVAPICH2 Approach

Intel HPC Dev Conf (SC ‘16) 17Network Based Computing Laboratory

Performance Benefits of the Enhanced Designs

• New designs to exploit high concurrency and MCDRAM of KNL

• Significant improvements for large message sizes

• Benefits seen in varying message size as well as varying MPI processes

Very Large Message Bi-directional Bandwidth16-process Intra-node All-to-AllIntra-node Broadcast with 64MB Message

0

2000

4000

6000

8000

10000

2M 4M 8M 16M 32M 64M

B
an

d
w

id
th

 (
M

B
/s

)

Message size

MVAPICH2 MVAPICH2-Optimized

0

10000

20000

30000

40000

50000

60000

4 8 16

La
te

n
cy

 (
u

s)

No. of processes

MVAPICH2 MVAPICH2-Optimized

27%

0

50000

100000

150000

200000

250000

300000

1M 2M 4M 8M 16M 32M

La
te

n
cy

 (
u

s)

Message size

MVAPICH2 MVAPICH2-Optimized
17.2%

52%

Intel HPC Dev Conf (SC ‘16) 18Network Based Computing Laboratory

Performance Benefits of the Enhanced Designs

0

10000

20000

30000

40000

50000

60000

1M 2M 4M 8M 16M 32M 64M

B
an

d
w

id
th

 (
M

B
/s

)

Message Size (bytes)

MV2_Opt_DRAM MV2_Opt_MCDRAM

MV2_Def_DRAM MV2_Def_MCDRAM 30%

0

50

100

150

200

250

300

4:268 4:204 4:64

Ti
m

e
(s

)

MPI Processes : OMP Threads

MV2_Def_DRAM MV2_Opt_DRAM

15%

Multi-Bandwidth using 32 MPI processesCNTK: MLP Training Time using MNIST (BS:64)

• Benefits observed on training time of Multi-level Perceptron (MLP) model on MNIST dataset

using CNTK Deep Learning Framework

Enhanced Designs will be available in upcoming MVAPICH2 releases

Intel HPC Dev Conf (SC ‘16) 19Network Based Computing Laboratory

• Hybrid MPI+OpenMP Models for Highly-threaded Systems

• Hybrid MPI+PGAS Models for Irregular Applications

• Hybrid MPI+GPGPUs and OpenSHMEM for Heterogeneous
Computing with Accelerators

Outline

Intel HPC Dev Conf (SC ‘16) 20Network Based Computing Laboratory

Maturity of Runtimes and Application Requirements

• MPI has been the most popular model for a long time

- Available on every major machine

- Portability, performance and scaling

- Most parallel HPC code is designed using MPI

- Simplicity - structured and iterative communication patterns

• PGAS Models

- Increasing interest in community

- Simple shared memory abstractions and one-sided communication

- Easier to express irregular communication

• Need for hybrid MPI + PGAS

- Application can have kernels with different communication characteristics

- Porting only part of the applications to reduce programming effort

Intel HPC Dev Conf (SC ‘16) 21Network Based Computing Laboratory

Hybrid (MPI+PGAS) Programming

• Application sub-kernels can be re-written in MPI/PGAS based on communication

characteristics

• Benefits:

– Best of Distributed Computing Model

– Best of Shared Memory Computing Model

Kernel 1
MPI

Kernel 2
MPI

Kernel 3
MPI

Kernel N
MPI

HPC Application

Kernel 2
PGAS

Kernel N
PGAS

Intel HPC Dev Conf (SC ‘16) 22Network Based Computing Laboratory

Current Approaches for Hybrid Programming

• Need more network and
memory resources

• Might lead to deadlock!

• Layering one programming model over another

– Poor performance due to semantics mismatch

– MPI-3 RMA tries to address

• Separate runtime for each programming model

Hybrid (OpenSHMEM + MPI) Applications

OpenSHMEM Runtime MPI Runtime

InfiniBand, RoCE, iWARP

OpenSHMEM Calls MPI Class

Intel HPC Dev Conf (SC ‘16) 23Network Based Computing Laboratory

The Need for a Unified Runtime

• Deadlock when a message is sitting in one runtime, but application calls the other runtime

• Prescription to avoid this is to barrier in one mode (either OpenSHMEM or MPI) before entering
the other

• Or runtimes require dedicated progress threads

• Bad performance!!

• Similar issues for MPI + UPC applications over individual runtimes

shmem_int_fadd (data at p1);

/* operate on data */

MPI_Barrier(comm);

/*
local
computation

*/
MPI_Barrier(comm);

P0 P1

OpenSHMEM
Runtime

MPI Runtime OpenSHMEM
Runtime

MPI Runtime

Active Msg

Intel HPC Dev Conf (SC ‘16) 24Network Based Computing Laboratory

MVAPICH2-X for Hybrid MPI + PGAS Applications

MPI, OpenSHMEM, UPC, CAF, UPC++ or Hybrid (MPI +

PGAS) Applications

Unified MVAPICH2-X Runtime

InfiniBand, RoCE, iWARP

OpenSHMEM Calls MPI CallsUPC Calls

• Unified communication runtime for MPI, UPC, OpenSHMEM, CAF, UPC++ available with MVAPICH2-

X 1.9 onwards! (since 2012)

– http://mvapich.cse.ohio-state.edu

• Feature Highlights

– Supports MPI(+OpenMP), OpenSHMEM, UPC, CAF, UPC++, MPI(+OpenMP) + OpenSHMEM, MPI(+OpenMP)

+ UPC

– MPI-3 compliant, OpenSHMEM v1.0 standard compliant, UPC v1.2 standard compliant (with initial support

for UPC 1.3), CAF 2008 standard (OpenUH), UPC++

– Scalable Inter-node and intra-node communication – point-to-point and collectives

CAF Calls UPC++ Calls

http://mvapich.cse.ohio-state.edu/overview/mvapich2x

Intel HPC Dev Conf (SC ‘16) 25Network Based Computing Laboratory

OpenSHMEM Atomic Operations: Performance

0

5

10

15

20

25

30

fadd finc add inc cswap swap

Ti
m

e
(u

s)
UH-SHMEM MV2X-SHMEM Scalable-SHMEM OMPI-SHMEM

• OSU OpenSHMEM micro-benchmarks (OMB v4.1)

• MV2-X SHMEM performs up to 40% better compared to UH-SHMEM

Intel HPC Dev Conf (SC ‘16) 26Network Based Computing Laboratory

0

1000

2000

3000

4000

64

12
8

25
6

51
2

1K 2K 4K 8K

16
K

32
K

64
K

12
8K

Ti
m

e
 (

m
s)

Message Size

UPC-GASNet
UPC-OSU

0
50

100
150
200
250

64

12
8

25
6

51
2

1K 2K 4K 8K

16
K

32
K

64
K

1
2

8
K

2
5

6
K

Ti
m

e
 (

m
s)

Message Size

UPC-GASNet

UPC-OSU 2X

UPC Collectives Performance
Broadcast (2,048 processes) Scatter (2,048 processes)

Gather (2,048 processes) Exchange (2,048 processes)

0

5000

10000

15000

6
4

12
8

25
6

51
2

1K 2K 4K 8K

16
K

32
K

64
K

12
8K

25
6K

Ti
m

e
 (

u
s)

Message Size

UPC-GASNet
UPC-OSU

0

100

200

300

64

12
8

25
6

51
2

1
K

2
K 4K 8
K

16
K

32
K

64
K

12
8K

25
6K

Ti
m

e
 (

m
s)

Message Size

UPC-GASNet

UPC-OSU

25X

2X

35%

J. Jose, K. Hamidouche, J. Zhang, A. Venkatesh, and D. K. Panda, Optimizing Collective Communication in UPC (HiPS’14, in association with

IPDPS’14)

Intel HPC Dev Conf (SC ‘16) 27Network Based Computing Laboratory

Performance Evaluations for CAF model

0

1000

2000

3000

4000

5000

6000

B
a
n

d
w

id
th

 (
M

B
/s

)

Message Size (byte)

GASNet-IBV

GASNet-MPI

MV2X

0

1000

2000

3000

4000

5000

6000

B
a
n

d
w

id
th

 (
M

B
/s

)

Message Size (byte)

GASNet-IBV

GASNet-MPI

MV2X

0
2
4
6
8

10

GASNet-IBV GASNet-MPI MV2X

L
a

te
n

c
y

(m
s
)

0
2
4
6
8

10

GASNet-IBV GASNet-MPI MV2XL
a

te
n

c
y
 (

m
s

)

0 100 200 300

bt.D.256

cg.D.256

ep.D.256

ft.D.256

mg.D.256

sp.D.256

GASNet-IBV GASNet-MPI MV2X

Time (sec)

Get NAS-CAFPut

• Micro-benchmark improvement (MV2X vs. GASNet-IBV, UH CAF test-suite)

– Put bandwidth: 3.5X improvement on 4KB; Put latency: reduce 29% on 4B

• Application performance improvement (NAS-CAF one-sided implementation)

– Reduce the execution time by 12% (SP.D.256), 18% (BT.D.256)

3.5X

29%

12%

18%

J. Lin, K. Hamidouche, X. Lu, M. Li and D. K. Panda, High-performance Co-array Fortran support with MVAPICH2-X: Initial

experience and evaluation, HIPS’15

Intel HPC Dev Conf (SC ‘16) 28Network Based Computing Laboratory

UPC++ Collectives Performance

MPI + {UPC++}

application

GASNet Interfaces

UPC++

Runtime

Network

Conduit (MPI)

MVAPICH2-X

Unified

communication

Runtime (UCR)

MPI + {UPC++}

application

UPC++ Runtime
MPI

Interfaces

• Full and native support for hybrid MPI + UPC++ applications

• Better performance compared to IBV and MPI conduits

• OSU Micro-benchmarks (OMB) support for UPC++

• Available since MVAPICH2-X 2.2RC1

0

5000

10000

15000

20000

25000

30000

35000

40000

T
im

e
(u

s)

Message Size (bytes)

GASNet_MPI

GASNET_IBV

MV2-X

14x

Inter-node Broadcast (64 nodes 1:ppn)

J. M. Hashmi, K. Hamidouche, and D. K. Panda, Enabling

Performance Efficient Runtime Support for hybrid

MPI+UPC++ Programming Models, IEEE International

Conference on High Performance Computing and

Communications (HPCC 2016)

Intel HPC Dev Conf (SC ‘16) 29Network Based Computing Laboratory

Application Level Performance with Graph500 and Sort
Graph500 Execution Time

J. Jose, S. Potluri, K. Tomko and D. K. Panda, Designing Scalable Graph500 Benchmark with Hybrid MPI+OpenSHMEM Programming

Models, International Supercomputing Conference (ISC’13), June 2013

0
5

10
15
20
25
30
35

4K 8K 16K

Ti
m

e
 (

s)

No. of Processes

MPI-Simple

MPI-CSC

MPI-CSR

Hybrid (MPI+OpenSHMEM)
13X

7.6X

• Performance of Hybrid (MPI+ OpenSHMEM) Graph500 Design

• 8,192 processes
- 2.4X improvement over MPI-CSR

- 7.6X improvement over MPI-Simple

• 16,384 processes
- 1.5X improvement over MPI-CSR

- 13X improvement over MPI-Simple

Sort Execution Time

0

500

1000

1500

2000

2500

3000

500GB-512 1TB-1K 2TB-2K 4TB-4K

Ti
m

e
 (

se
co

n
d

s)

Input Data - No. of Processes

MPI Hybrid

51%

• Performance of Hybrid (MPI+OpenSHMEM) Sort
Application

• 4,096 processes, 4 TB Input Size
- MPI – 2408 sec; 0.16 TB/min

- Hybrid – 1172 sec; 0.36 TB/min

- 51% improvement over MPI-design

J. Jose, S. Potluri, H. Subramoni, X. Lu, K. Hamidouche, K. Schulz, H. Sundar and D. Panda Designing Scalable Out-of-core Sorting with
Hybrid MPI+PGAS Programming Models, PGAS’14

Intel HPC Dev Conf (SC ‘16) 30Network Based Computing Laboratory

MiniMD – Total Execution Time

• Hybrid design performs better than MPI implementation

• 1,024 processes

- 17% improvement over MPI version

• Strong Scaling

Input size: 128 * 128 * 128

Performance Strong Scaling

0

1000

2000

3000

512 1,024

Hybrid-Barrier MPI-Original Hybrid-Advanced

17%

0

1000

2000

3000

256 512 1,024

Hybrid-Barrier MPI-Original Hybrid-Advanced

Ti
m

e
(m

s)

Ti
m

e
(m

s)

of Cores # of Cores

Intel HPC Dev Conf (SC ‘16) 31Network Based Computing Laboratory

Accelerating MaTEx k-NN with Hybrid MPI and OpenSHMEM

KDD (2.5GB) on 512 cores

9.0%

KDD-tranc (30MB) on 256 cores

27.6%

• Benchmark: KDD Cup 2010 (8,407,752 records, 2 classes, k=5)
• For truncated KDD workload on 256 cores, reduce 27.6% execution time
• For full KDD workload on 512 cores, reduce 9.0% execution time

J. Lin, K. Hamidouche, J. Zhang, X. Lu, A. Vishnu, D. Panda. Accelerating k-NN Algorithm with Hybrid MPI and OpenSHMEM,

OpenSHMEM 2015

• MaTEx: MPI-based Machine learning algorithm library
• k-NN: a popular supervised algorithm for classification
• Hybrid designs:

– Overlapped Data Flow; One-sided Data Transfer; Circular-buffer Structure

Intel HPC Dev Conf (SC ‘16) 32Network Based Computing Laboratory

• Hybrid MPI+OpenMP Models for Highly-threaded Systems

• Hybrid MPI+PGAS Models for Irregular Applications

• Hybrid MPI+GPGPUs and OpenSHMEM for Heterogeneous
Computing with Accelerators

Outline

Intel HPC Dev Conf (SC ‘16) 33Network Based Computing Laboratory

At Sender:

At Receiver:

MPI_Recv(r_devbuf, size, …);

inside

MVAPICH2

• Standard MPI interfaces used for unified data movement

• Takes advantage of Unified Virtual Addressing (>= CUDA 4.0)

• Overlaps data movement from GPU with RDMA transfers

High Performance and High Productivity

MPI_Send(s_devbuf, size, …);

GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GPU

Intel HPC Dev Conf (SC ‘16) 34Network Based Computing Laboratory

CUDA-Aware MPI: MVAPICH2-GDR 1.8-2.2 Releases
• Support for MPI communication from NVIDIA GPU device memory

• High performance RDMA-based inter-node point-to-point communication
(GPU-GPU, GPU-Host and Host-GPU)

• High performance intra-node point-to-point communication for multi-GPU
adapters/node (GPU-GPU, GPU-Host and Host-GPU)

• Taking advantage of CUDA IPC (available since CUDA 4.1) in intra-node
communication for multiple GPU adapters/node

• Optimized and tuned collectives for GPU device buffers

• MPI datatype support for point-to-point and collective communication from
GPU device buffers

• Unified memory

Intel HPC Dev Conf (SC ‘16) 35Network Based Computing Laboratory

0

1000

2000

3000

4000

1 4 16 64 256 1K 4K

MV2-GDR2.2
MV2-GDR2.0b
MV2 w/o GDR

GPU-GPU Internode Bi-Bandwidth

Message Size (bytes)

B
i-

B
an

d
w

id
th

 (
M

B
/s

)

0

5

10

15

20

25

30

0 2 8 32 128 512 2K

MV2-GDR2.2 MV2-GDR2.0b
MV2 w/o GDR

GPU-GPU internode latency

Message Size (bytes)

La
te

n
cy

 (
u

s)

MVAPICH2-GDR-2.2
Intel Ivy Bridge (E5-2680 v2) node - 20 cores

NVIDIA Tesla K40c GPU
Mellanox Connect-X4 EDR HCA

CUDA 8.0
Mellanox OFED 3.0 with GPU-Direct-RDMA

10x
2X

11x

Performance of MVAPICH2-GPU with GPU-Direct RDMA (GDR)

2.18us

0

500

1000

1500

2000

2500

3000

1 4 16 64 256 1K 4K

MV2-GDR2.2

MV2-GDR2.0b

MV2 w/o GDR

GPU-GPU Internode Bandwidth

Message Size (bytes)

B
a

n
d

w
id

th

(M
B

/s
) 11X

2X

3X

Intel HPC Dev Conf (SC ‘16) 36Network Based Computing Laboratory

• Platform: Wilkes (Intel Ivy Bridge + NVIDIA Tesla K20c + Mellanox Connect-IB)

• HoomdBlue Version 1.0.5

• GDRCOPY enabled: MV2_USE_CUDA=1 MV2_IBA_HCA=mlx5_0 MV2_IBA_EAGER_THRESHOLD=32768

MV2_VBUF_TOTAL_SIZE=32768 MV2_USE_GPUDIRECT_LOOPBACK_LIMIT=32768

MV2_USE_GPUDIRECT_GDRCOPY=1 MV2_USE_GPUDIRECT_GDRCOPY_LIMIT=16384

Application-Level Evaluation (HOOMD-blue)

0

500

1000

1500

2000

2500

4 8 16 32

A
ve

ra
ge

 T
im

e
St

ep
s

p
er

se

co
n

d
 (

TP
S)

Number of Processes

MV2 MV2+GDR

0

500

1000

1500

2000

2500

3000

3500

4 8 16 32A
ve

ra
ge

 T
im

e
St

ep
s

p
er

se

co
n

d
 (

TP
S)

Number of Processes

64K Particles 256K Particles

2X
2X

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu

Intel HPC Dev Conf (SC ‘16) 37Network Based Computing Laboratory

Application-Level Evaluation (Cosmo) and Weather Forecasting in Switzerland

0

0.2

0.4

0.6

0.8

1

1.2

16 32 64 96N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

Number of GPUs

CSCS GPU cluster

Default Callback-based Event-based

0

0.2

0.4

0.6

0.8

1

1.2

4 8 16 32

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

Number of GPUs

Wilkes GPU Cluster

Default Callback-based Event-based

• 2X improvement on 32 GPUs nodes
• 30% improvement on 96 GPU nodes (8 GPUs/node)

C. Chu, K. Hamidouche, A. Venkatesh, D. Banerjee , H. Subramoni, and D. K. Panda, Exploiting Maximal Overlap for Non-Contiguous Data

Movement Processing on Modern GPU-enabled Systems, IPDPS’16

On-going collaboration with CSCS and MeteoSwiss (Switzerland) in co-designing MV2-GDR and Cosmo Application

Cosmo model: http://www2.cosmo-model.org/content

/tasks/operational/meteoSwiss/

mailto:panda@cse.ohio-state.edu
http://www2.cosmo-model.org/content
mailto:panda@cse.ohio-state.edu

Intel HPC Dev Conf (SC ‘16) 38Network Based Computing Laboratory

Need for Non-Uniform Memory Allocation in OpenSHMEM for
Heterogeneous Architectures

• MIC cores have limited

memory per core

• OpenSHMEM relies on

symmetric memory,

allocated using shmalloc()

• shmalloc() allocates same amount of memory on all PEs

• For applications running in symmetric mode, this limits the total heap size

• Similar issues for applications (even host-only) with memory load imbalance

(Graph500, Out-of-Core Sort, etc.)

• How to allocate different amounts of memory on host and MIC cores, and still be

able to communicate?

MIC MemoryHost Memory

Host Cores MIC Cores

Memory per core

Intel HPC Dev Conf (SC ‘16) 39Network Based Computing Laboratory

OpenSHMEM Design for MIC Clusters

OpenSHMEM
Applications

Multi/Many-Core Architectures
with memory heterogeneity

MVAPICH2-X OpenSHMEM Runtime

InfiniBand Networks

OpenSHMEM
Programming Model

InfiniBand
Channel

SCIF Channel
Shared Memory/

CMA Channel

Proxy based Communication

Extensions

Application
Co-Design

Symmetric Memory Manager

• Non-Uniform Memory Allocation:

– Team-based Memory Allocation

(Proposed Extensions)

– Address Structure for non-uniform memory allocations

void shmem_team_create(shmem_team_t team, int *ranks,

int size, shmem_team_t *newteam);

void shmem_team_destroy(shmem_team_t *team);

void shmem_team_split(shmem_team_t team, int color,

int key, shmem_team_t *newteam);

int shmem_team_rank(shmem_team_t team);

int shmem_team_size(shmem_team_t team);

void *shmalloc_team (shmem_team_t team, size_t size);

void shfree_team(shmem_team_t team, void *addr);

Intel HPC Dev Conf (SC ‘16) 40Network Based Computing Laboratory

HOST2

Proxy-based Designs for OpenSHMEM

OpenSHMEM Put using Active Proxy OpenSHMEM Get using Active Proxy

HOST1

MIC1
H
C
A

HOST2

MIC2
H
C
A

(1) IB REQ

(2) SCIF
Read

(2) IB
Write

(3) IB
FIN

HOST1

MIC1
H
C
A

MIC2
H
C
A

(3) IB
FIN

(2) SCIF
Read

(2) IB
Write

(1) IB
REQ

• Current generation architectures impose limitations on read bandwidth when HCA
reads from MIC memory

– Impacts both put and get operation performance

• Solution: Pipelined data transfer by proxy running on host using IB and SCIF channels

• Improves latency and bandwidth!

Intel HPC Dev Conf (SC ‘16) 41Network Based Computing Laboratory

OpenSHMEM Put/Get Performance

OpenSHMEM Put Latency OpenSHMEM Get Latency

0

1000

2000

3000

4000

5000

1 4

16 64

25
6

1K 4K

16
K

64
K

25
6K 1M 4M

La
te

n
cy

 (
u

s)

Message Size

MV2X-Def
MV2X-Opt

0

1000

2000

3000

4000

5000

1 4

16 64

25
6

1K 4K

16
K

64
K

25
6K 1M 4M

La
te

n
cy

 (
u

s)

Message Size

MV2X-Def

MV2X-Opt

• Proxy-based designs alleviate hardware limitations

• Put Latency of 4M message: Default: 3911us, Optimized: 838us

• Get Latency of 4M message: Default: 3889us, Optimized: 837us

4.5X 4.6X

Intel HPC Dev Conf (SC ‘16) 42Network Based Computing Laboratory

Performance Evaluations using Graph500

Native Mode (8 procs/MIC) Symmetric Mode (16 Host+16MIC)

• Graph500 Execution Time (Native Mode):
– 8 processes per MIC node

– At 512 processes , Default: 5.17s, Optimized: 4.96s

– Performance Improvement from MIC-aware collectives design

• Graph500 Execution Time (Symmetric Mode):
– 16 processes on each Host and MIC node

– At 1,024 processes, Default: 15.91s, Optimized: 12.41s

– Performance Improvement from MIC-aware collectives and proxy-based designs

0

2

4

6

64 128 256 512Ex
ec

u
ti

o
n

 T
im

e
 (

s)

Number of Processes

MV2X-Def MV2X-Opt

0

5

10

15

20

25

128 256 512 1024Ex
ec

u
ti

o
n

 T
im

e
(s

)

Number of Processes

MV2X-Def MV2X-Opt

28%

Intel HPC Dev Conf (SC ‘16) 43Network Based Computing Laboratory

Graph500 Evaluations with Extensions

• Redesigned Graph500 using MIC to overlap computation/communication
– Data Transfer to MIC memory; MIC cores pre-processes received data

– Host processes traverses vertices, and sends out new vertices

• Graph500 Execution time at 1,024 processes:
– 16 processes on each Host and MIC node

– Host-Only: .33s, Host+MIC with Extensions: .26s

• Magnitudes of improvement compared to default symmetric mode
– Default Symmetric Mode: 12.1s, Host+MIC Extensions: 0.16s

0

0.2

0.4

0.6

0.8

128 256 512 1024
Ex

ec
u

ti
o

n
 T

im
e

 (
s)

Number of Processes

Host Host+MIC (extensions)

26%

J. Jose, K. Hamidouche, X. Lu, S. Potluri, J. Zhang, K. Tomko and D. K. Panda, High Performance OpenSHMEM for Intel MIC Clusters: Extensions,

Runtime Designs and Application Co-Design, IEEE International Conference on Cluster Computing (CLUSTER '14) (Best Paper Finalist)

Intel HPC Dev Conf (SC ‘16) 44Network Based Computing Laboratory

• Architectures for Exascale systems are evolving

• Exascale systems will be constrained by
– Power

– Memory per core

– Data movement cost

– Faults

• Programming Models, Runtimes and Middleware need to be designed for
– Scalability

– Performance

– Fault-resilience

– Energy-awareness

– Programmability

– Productivity

• High Performance and Scalable MPI+X libraries are needed

• Highlighted some of the approaches taken by the MVAPICH2 project

• Need continuous innovation to have the right MPI+X libraries for Exascale
systems

Looking into the Future ….

Intel HPC Dev Conf (SC ‘16) 45Network Based Computing Laboratory

Funding Acknowledgments

Funding Support by

Equipment Support by

Intel HPC Dev Conf (SC ‘16) 46Network Based Computing Laboratory

Personnel Acknowledgments
Current Students

– A. Awan (Ph.D.)

– M. Bayatpour (Ph.D.)

– S. Chakraborthy (Ph.D.)

– C.-H. Chu (Ph.D.)

Past Students

– A. Augustine (M.S.)

– P. Balaji (Ph.D.)

– S. Bhagvat (M.S.)

– A. Bhat (M.S.)

– D. Buntinas (Ph.D.)

– L. Chai (Ph.D.)

– B. Chandrasekharan (M.S.)

– N. Dandapanthula (M.S.)

– V. Dhanraj (M.S.)

– T. Gangadharappa (M.S.)

– K. Gopalakrishnan (M.S.)

– R. Rajachandrasekar (Ph.D.)

– G. Santhanaraman (Ph.D.)

– A. Singh (Ph.D.)

– J. Sridhar (M.S.)

– S. Sur (Ph.D.)

– H. Subramoni (Ph.D.)

– K. Vaidyanathan (Ph.D.)

– A. Vishnu (Ph.D.)

– J. Wu (Ph.D.)

– W. Yu (Ph.D.)

Past Research Scientist

– S. Sur

Past Post-Docs

– D. Banerjee

– X. Besseron

– H.-W. Jin

– W. Huang (Ph.D.)

– W. Jiang (M.S.)

– J. Jose (Ph.D.)

– S. Kini (M.S.)

– M. Koop (Ph.D.)

– K. Kulkarni (M.S.)

– R. Kumar (M.S.)

– S. Krishnamoorthy (M.S.)

– K. Kandalla (Ph.D.)

– P. Lai (M.S.)

– J. Liu (Ph.D.)

– M. Luo (Ph.D.)

– A. Mamidala (Ph.D.)

– G. Marsh (M.S.)

– V. Meshram (M.S.)

– A. Moody (M.S.)

– S. Naravula (Ph.D.)

– R. Noronha (Ph.D.)

– X. Ouyang (Ph.D.)

– S. Pai (M.S.)

– S. Potluri (Ph.D.)

– S. Guganani (Ph.D.)

– J. Hashmi (Ph.D.)

– N. Islam (Ph.D.)

– M. Li (Ph.D.)

– J. Lin

– M. Luo

– E. Mancini

Current Research Scientists

– K. Hamidouche

– X. Lu

– H. Subramoni

Past Programmers

– D. Bureddy

– M. Arnold

– J. Perkins

Current Research Specialist

– J. Smith
– M. Rahman (Ph.D.)

– D. Shankar (Ph.D.)

– A. Venkatesh (Ph.D.)

– J. Zhang (Ph.D.)

– S. Marcarelli

– J. Vienne

– H. Wang

Intel HPC Dev Conf (SC ‘16) 47Network Based Computing Laboratory

• Three Conference Tutorials (IB+HSE, IB+HSE Advanced, Big Data)

• HP-CAST

• Technical Papers (SC main conference; Doctoral Showcase; Poster; PDSW-
DISC, PAW, COMHPC, and ESPM2 Workshops)

• Booth Presentations (Mellanox, NVIDIA, NRL, PGAS)

• HPC Connection Workshop

• Will be stationed at Ohio Supercomputer Center/OH-TECH Booth (#1107)
– Multiple presentations and demos

• More Details from http://mvapich.cse.ohio-state.edu/talks/

OSU Team Will be Participating in Multiple Events at SC ‘16

http://mvapich.cse.ohio-state.edu/talks/

Intel HPC Dev Conf (SC ‘16) 48Network Based Computing Laboratory

panda@cse.ohio-state.edu, hamidouch@cse.ohio-state.edu

Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The MVAPICH Project
http://mvapich.cse.ohio-state.edu/

mailto:panda@cse.ohio-state.edu
mailto:hamidouch@cse.ohio-state.edu
http://nowlab.cse.ohio-state.edu/

