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High-End Computing (HEC): ExaFlop & ExaByte

100-200 

PFlops in 

2016-2018

1 EFlops in 

2023-2024?

10K-20K 

EBytes in 

2016-2018

40K EBytes 

in 2020 ?

ExaFlop & HPC
•

ExaByte & BigData
•
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Trends for Commodity Computing Clusters in the Top 500 
List (http://www.top500.org)
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Drivers of Modern HPC Cluster Architectures

Tianhe – 2 Titan Stampede Tianhe – 1A 

• Multi-core/many-core technologies

• Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE)

• Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), NVMe-SSD

• Accelerators (NVIDIA GPGPUs and Intel Xeon Phi)

Accelerators / Coprocessors 
high compute density, high 

performance/watt
>1 TFlop DP on a chip 

High Performance Interconnects -
InfiniBand

<1usec latency, 100Gbps Bandwidth>Multi-core Processors SSD, NVMe-SSD, NVRAM
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Designing Communication Libraries for Multi-Petaflop and 
Exaflop Systems: Challenges 

Programming Models
MPI, PGAS (UPC, Global Arrays, OpenSHMEM), CUDA, OpenMP, 

OpenACC, Cilk, Hadoop (MapReduce), Spark (RDD, DAG), etc.

Application Kernels/Applications

Networking Technologies
(InfiniBand, 40/100GigE, 

Aries, and OmniPath)

Multi/Many-core
Architectures

Accelerators
(NVIDIA and MIC)

Middleware

Co-Design 

Opportunities 

and 

Challenges 

across Various 

Layers

Performance

Scalability

Fault-

Resilience

Communication Library or Runtime for Programming Models
Point-to-point 

Communicatio

n

Collective 

Communicatio

n

Energy-

Awareness

Synchronizatio

n and Locks

I/O and

File Systems

Fault

Tolerance
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Exascale Programming models 

Next-Generation Programming models

MPI+X  

X= ?

OpenMP, OpenACC, CUDA, PGAS, Tasks….

Highly-Threaded 

Systems (KNL)

Irregular 

Communications

Heterogeneous 

Computing with 

Accelerators

• The community believes 

exascale programming model 

will be MPI+X 

• But what is X? 

– Can it be just OpenMP? 

• Many different environments 

and systems are emerging

– Different `X’ will satisfy the 

respective needs
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• Scalability for million to billion processors
– Support for highly-efficient inter-node and intra-node communication (both two-sided and one-sided)

– Scalable job start-up

• Scalable Collective communication
– Offload

– Non-blocking

– Topology-aware

• Balancing intra-node and inter-node communication for next generation nodes (128-1024 cores)
– Multiple end-points per node

• Support for efficient multi-threading (OpenMP)

• Integrated Support for GPGPUs and Accelerators (CUDA)

• Fault-tolerance/resiliency

• QoS support for communication and I/O

• Support for Hybrid MPI+PGAS programming (MPI + OpenMP, MPI + UPC, MPI + OpenSHMEM, 
CAF, …)

• Virtualization 

• Energy-Awareness

MPI+X Programming model: Broad Challenges at Exascale 
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• Extreme Low Memory Footprint
– Memory per core continues to decrease

• D-L-A Framework

– Discover

• Overall network topology (fat-tree, 3D, …), Network topology for processes for a given job

• Node architecture, Health of network and node

– Learn

• Impact on performance and scalability

• Potential for failure

– Adapt

• Internal protocols and algorithms

• Process mapping

• Fault-tolerance solutions 

– Low overhead techniques while delivering performance, scalability and fault-tolerance

Additional Challenges for Designing Exascale Software Libraries 
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Overview of the MVAPICH2 Project
• High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Started in 2001, First version available in 2002

– MVAPICH2-X (MPI + PGAS), Available since 2011

– Support for GPGPUs  (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014

– Support for Virtualization (MVAPICH2-Virt), Available since 2015

– Support for Energy-Awareness (MVAPICH2-EA), Available since 2015

– Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015

– Used by more than 2,690 organizations in 83 countries

– More than 402,000 (> 0.4 million) downloads from the OSU site directly

– Empowering many TOP500 clusters (Nov ‘16 ranking)

• 1st ranked 10,649,640-core cluster (Sunway TaihuLight) at  NSC, Wuxi, China

• 13th ranked 241,108-core cluster (Pleiades) at NASA

• 17th ranked 519,640-core cluster (Stampede) at  TACC

• 40th ranked 76,032-core cluster (Tsubame 2.5) at Tokyo Institute of Technology and many others

– Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)

– http://mvapich.cse.ohio-state.edu

• Empowering Top500 systems for over a decade

– System-X from Virginia Tech (3rd in Nov 2003, 2,200 processors, 12.25 TFlops) ->

Sunway TaihuLight at NSC, Wuxi, China (1st in Nov’16, 10,649,640 cores, 93 PFlops)

http://mvapich.cse.ohio-state.edu/
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• Hybrid MPI+OpenMP Models for Highly-threaded Systems

• Hybrid MPI+PGAS Models for Irregular Applications

• Hybrid MPI+GPGPUs and OpenSHMEM for Heterogeneous 
Computing with Accelerators 

Outline
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• Systems like KNL

• MPI+OpenMP is seen as the best fit 

– 1 MPI process per socket for Multi-core 

– 4-8 MPI processes per KNL 

– Each MPI process will launch OpenMP threads 

• However, current MPI runtimes are not “efficiently” handling the hybrid 

– Most of the application use Funneled  mode: Only the MPI processes perform 

communication 

– Communication phases are the bottleneck 

• Multi-endpoint based designs 

– Transparently use threads inside MPI runtime 

– Increase the concurrency 

Highly Threaded Systems 
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• MPI-4 will enhance the thread support 

– Endpoint proposal in the Forum 

– Application threads will be able to efficiently perform communication 

– Endpoint is the communication entity that maps to a thread

• Idea is to have multiple addressable communication entities within a single process

• No context switch between application and runtime => better performance 

• OpenMP 4.5 is more powerful than just traditional data parallelism

– Supports task  parallelism since OpenMP 3.0 

– Supports heterogeneous computing with accelerator targets since OpenMP 4.0 

– Supports explicit SIMD and threads affinity pragmas since OpenMP 4.0 

MPI and OpenMP 



Intel HPC Dev Conf (SC ‘16) 13Network Based Computing Laboratory

• Lock-free Communication 

– Threads have their own resources

• Dynamically adapt the number of threads 

– Avoid resource contention

– Depends on application pattern and system 

performance 

• Both intra- and inter-nodes communication

– Threads boost both channels 

• New MEP-Aware collectives

• Applicable to the endpoint proposal in MPI-4

MEP-based design: MVAPICH2 Approach 

Multi-endpoint Runtime

Request
Handling

Progress
Engine

Comm.
Resources

Management

Endpoint Controller

Collective

Optimized Algorithm
Point-to-Point

MPI/OpenMP Program

MPI Collective

(MPI_Alltoallv,

MPI_Allgatherv...)

*Transparent support

MPI Point-to-Point

(MPI_Isend, MPI_Irecv,

MPI_Waitall...)

*OpenMP Pragma needed

Lock-free Communication Components

M. Luo, X. Lu, K. Hamidouche, K. Kandalla and D. K. Panda, Initial Study of Multi-Endpoint Runtime for MPI+OpenMP Hybrid 

Applications on Multi-Core Systems. International Symposium on Principles and Practice of Parallel Programming (PPoPP '14). 
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Performance Benefits: OSU Micro-Benchmarks (OMB) level
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Multi-pairs Bcast Alltoallv

• Reduces the latency from 40us to 1.85 us (21X) 

• Achieves the same as Processes  

• 40% improvement on latency for Bcast on 4,096 cores

• 30% improvement on latency for Alltoall on 4,096 cores
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Performance Benefits: Application Kernel level 
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• 6.3% improvement for MG, 11.7% improvement for CG, and 12.6% improvement for LU on 4,096 

cores. 

• With P3DFFT, we are able to observe a 30% improvement in communication time and 13.5% 

improvement in the total execution time. 
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• On-load approach 

– Takes advantage of the idle cores 

– Dynamically configurable 

– Takes advantage of highly multithreaded cores 

– Takes advantage of MCDRAM of KNL processors

• Applicable to other programming models such as PGAS, Task-based, etc.

• Provides portability, performance, and applicability to runtime as well as 

applications in a transparent manner

Enhanced Designs for KNL: MVAPICH2 Approach 
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Performance Benefits of the Enhanced Designs

• New designs to exploit high concurrency and MCDRAM of KNL

• Significant improvements for large message sizes

• Benefits seen in varying message size as well as varying MPI processes 

Very Large Message Bi-directional Bandwidth16-process Intra-node All-to-AllIntra-node Broadcast with 64MB Message
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Performance Benefits of the Enhanced Designs
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• Benefits observed on training time of Multi-level Perceptron (MLP) model on MNIST dataset 

using CNTK Deep Learning Framework

Enhanced Designs will be available in upcoming MVAPICH2 releases 
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• Hybrid MPI+OpenMP Models for Highly-threaded Systems

• Hybrid MPI+PGAS Models for Irregular Applications

• Hybrid MPI+GPGPUs and OpenSHMEM for Heterogeneous 
Computing with Accelerators

Outline
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Maturity of Runtimes and Application Requirements

• MPI has been the most popular model for a long time

- Available on every major machine

- Portability, performance and scaling

- Most parallel HPC code is designed using MPI

- Simplicity - structured and iterative communication patterns

• PGAS Models

- Increasing interest in community

- Simple shared memory abstractions and one-sided communication 

- Easier to express irregular communication

• Need for hybrid MPI + PGAS

- Application can have kernels with different communication characteristics

- Porting only part of the applications to reduce programming effort
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Hybrid (MPI+PGAS) Programming

• Application sub-kernels can be re-written in MPI/PGAS based on communication 

characteristics

• Benefits:

– Best of Distributed Computing Model

– Best of Shared Memory Computing Model

Kernel 1
MPI

Kernel 2
MPI

Kernel 3
MPI

Kernel N
MPI

HPC Application

Kernel 2
PGAS

Kernel N
PGAS
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Current Approaches for Hybrid Programming

• Need more network and 
memory resources

• Might lead to deadlock!

• Layering one programming model over another

– Poor performance due to semantics mismatch

– MPI-3 RMA tries to address

• Separate runtime for each programming model

Hybrid (OpenSHMEM + MPI) Applications

OpenSHMEM Runtime MPI Runtime

InfiniBand, RoCE, iWARP

OpenSHMEM Calls MPI Class
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The Need for a Unified Runtime

• Deadlock when a message is sitting in one runtime, but application calls the other runtime

• Prescription to avoid this is to barrier in one mode (either OpenSHMEM or MPI) before entering 
the other 

• Or runtimes require dedicated progress threads

• Bad performance!!

• Similar issues for MPI + UPC applications over individual runtimes

shmem_int_fadd (data at p1);

/* operate on data */

MPI_Barrier(comm);

/* 
local
computation 

*/
MPI_Barrier(comm);

P0 P1

OpenSHMEM 
Runtime

MPI Runtime OpenSHMEM 
Runtime

MPI Runtime

Active Msg
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MVAPICH2-X for Hybrid MPI + PGAS Applications

MPI, OpenSHMEM, UPC, CAF, UPC++ or  Hybrid (MPI + 

PGAS) Applications

Unified MVAPICH2-X Runtime

InfiniBand, RoCE, iWARP

OpenSHMEM Calls MPI CallsUPC Calls

• Unified communication runtime for MPI, UPC, OpenSHMEM, CAF, UPC++ available with MVAPICH2-

X 1.9 onwards!  (since 2012)

– http://mvapich.cse.ohio-state.edu

• Feature Highlights

– Supports MPI(+OpenMP), OpenSHMEM, UPC, CAF, UPC++, MPI(+OpenMP) + OpenSHMEM, MPI(+OpenMP) 

+ UPC 

– MPI-3 compliant, OpenSHMEM v1.0 standard compliant, UPC v1.2 standard compliant (with initial support 

for UPC 1.3), CAF 2008 standard (OpenUH), UPC++

– Scalable Inter-node and intra-node communication – point-to-point and collectives

CAF Calls UPC++ Calls

http://mvapich.cse.ohio-state.edu/overview/mvapich2x
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OpenSHMEM Atomic Operations: Performance 
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• OSU OpenSHMEM micro-benchmarks (OMB v4.1)

• MV2-X SHMEM performs up to 40% better compared to UH-SHMEM
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J. Jose, K. Hamidouche,  J. Zhang, A. Venkatesh, and D. K. Panda, Optimizing Collective Communication in UPC (HiPS’14, in association with 

IPDPS’14)
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Performance Evaluations for CAF model

0

1000

2000

3000

4000

5000

6000

B
a
n

d
w

id
th

 (
M

B
/s

)

Message Size (byte)

GASNet-IBV

GASNet-MPI

MV2X

0

1000

2000

3000

4000

5000

6000

B
a
n

d
w

id
th

 (
M

B
/s

)

Message Size (byte)

GASNet-IBV

GASNet-MPI

MV2X

0
2
4
6
8

10

GASNet-IBV GASNet-MPI MV2X

L
a

te
n

c
y
 

(m
s
)

0
2
4
6
8

10

GASNet-IBV GASNet-MPI MV2XL
a

te
n

c
y
 (

m
s

)

0 100 200 300

bt.D.256

cg.D.256

ep.D.256

ft.D.256

mg.D.256

sp.D.256

GASNet-IBV GASNet-MPI MV2X

Time (sec)

Get NAS-CAFPut

• Micro-benchmark improvement (MV2X vs. GASNet-IBV, UH CAF test-suite)

– Put bandwidth: 3.5X improvement on 4KB; Put latency: reduce 29% on 4B

• Application performance improvement (NAS-CAF one-sided implementation)

– Reduce the execution time by 12% (SP.D.256), 18% (BT.D.256)

3.5X

29%

12%

18%

J. Lin, K. Hamidouche, X. Lu, M. Li and D. K. Panda, High-performance Co-array Fortran support with MVAPICH2-X: Initial 

experience and evaluation, HIPS’15
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UPC++ Collectives Performance

MPI + {UPC++} 

application

GASNet Interfaces

UPC++ 

Runtime

Network

Conduit (MPI)

MVAPICH2-X

Unified 

communication 

Runtime (UCR)

MPI + {UPC++} 

application

UPC++ Runtime
MPI 

Interfaces

• Full and native support for hybrid MPI + UPC++ applications

• Better performance compared to IBV and MPI conduits

• OSU Micro-benchmarks (OMB) support for UPC++

• Available since MVAPICH2-X 2.2RC1
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J. M. Hashmi, K. Hamidouche, and D. K. Panda, Enabling 

Performance Efficient Runtime Support for hybrid 

MPI+UPC++ Programming Models, IEEE International 

Conference on High Performance Computing and 

Communications (HPCC 2016) 



Intel HPC Dev Conf (SC ‘16) 29Network Based Computing Laboratory

Application Level Performance with Graph500 and Sort
Graph500 Execution Time

J. Jose, S. Potluri, K. Tomko and D. K. Panda, Designing Scalable Graph500 Benchmark with Hybrid MPI+OpenSHMEM Programming 

Models, International Supercomputing Conference (ISC’13), June 2013
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• Performance of Hybrid (MPI+ OpenSHMEM) Graph500 Design

• 8,192 processes
- 2.4X improvement over MPI-CSR

- 7.6X improvement over MPI-Simple
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- 1.5X improvement over MPI-CSR

- 13X improvement over MPI-Simple
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• Performance of Hybrid (MPI+OpenSHMEM) Sort 
Application

• 4,096 processes, 4 TB Input Size
- MPI – 2408 sec; 0.16 TB/min

- Hybrid – 1172 sec; 0.36 TB/min

- 51% improvement over MPI-design

J. Jose, S. Potluri, H. Subramoni, X. Lu, K. Hamidouche, K. Schulz, H. Sundar and D. Panda Designing Scalable Out-of-core Sorting with 
Hybrid MPI+PGAS Programming Models, PGAS’14 
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MiniMD – Total Execution Time

• Hybrid design performs better than MPI implementation

• 1,024 processes

- 17% improvement over MPI version

• Strong Scaling

Input size: 128 * 128 * 128

Performance Strong Scaling
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Accelerating MaTEx k-NN with Hybrid MPI and OpenSHMEM

KDD (2.5GB) on 512 cores

9.0%

KDD-tranc (30MB) on 256 cores

27.6%

• Benchmark: KDD Cup 2010 (8,407,752 records, 2 classes, k=5)
• For truncated KDD workload on 256 cores, reduce 27.6% execution time
• For full KDD workload on 512 cores, reduce 9.0% execution time

J. Lin, K. Hamidouche, J. Zhang, X. Lu, A. Vishnu, D. Panda. Accelerating k-NN Algorithm with Hybrid MPI and OpenSHMEM, 

OpenSHMEM 2015

• MaTEx: MPI-based Machine learning algorithm library
• k-NN: a popular supervised  algorithm for classification
• Hybrid designs: 

– Overlapped Data Flow; One-sided Data Transfer; Circular-buffer Structure
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• Hybrid MPI+OpenMP Models for Highly-threaded Systems

• Hybrid MPI+PGAS Models for Irregular Applications

• Hybrid MPI+GPGPUs and OpenSHMEM for Heterogeneous 
Computing with Accelerators

Outline



Intel HPC Dev Conf (SC ‘16) 33Network Based Computing Laboratory

At Sender:

At Receiver:

MPI_Recv(r_devbuf, size, …);

inside

MVAPICH2

• Standard MPI interfaces used for unified data movement

• Takes advantage of Unified Virtual Addressing (>= CUDA 4.0) 

• Overlaps data movement from GPU with RDMA transfers 

High Performance and High Productivity

MPI_Send(s_devbuf, size, …);

GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GPU 
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CUDA-Aware MPI: MVAPICH2-GDR 1.8-2.2 Releases
• Support for MPI communication from NVIDIA GPU device memory

• High performance RDMA-based inter-node point-to-point communication 
(GPU-GPU, GPU-Host and Host-GPU)

• High performance intra-node point-to-point communication for multi-GPU 
adapters/node (GPU-GPU, GPU-Host and Host-GPU)

• Taking advantage of CUDA IPC (available since CUDA 4.1) in intra-node 
communication for multiple GPU adapters/node

• Optimized and tuned collectives for GPU device buffers

• MPI datatype support for point-to-point and collective communication from 
GPU device buffers

• Unified memory
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• Platform: Wilkes (Intel Ivy Bridge + NVIDIA Tesla K20c + Mellanox Connect-IB)

• HoomdBlue Version 1.0.5 

• GDRCOPY enabled: MV2_USE_CUDA=1 MV2_IBA_HCA=mlx5_0 MV2_IBA_EAGER_THRESHOLD=32768 

MV2_VBUF_TOTAL_SIZE=32768 MV2_USE_GPUDIRECT_LOOPBACK_LIMIT=32768 

MV2_USE_GPUDIRECT_GDRCOPY=1 MV2_USE_GPUDIRECT_GDRCOPY_LIMIT=16384

Application-Level Evaluation (HOOMD-blue)
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Application-Level Evaluation (Cosmo) and Weather Forecasting in Switzerland
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• 2X improvement on 32 GPUs nodes
• 30% improvement on 96 GPU nodes (8 GPUs/node) 

C. Chu, K. Hamidouche, A. Venkatesh, D. Banerjee , H. Subramoni, and D. K. Panda, Exploiting Maximal Overlap for Non-Contiguous Data 

Movement Processing on Modern GPU-enabled Systems, IPDPS’16

On-going collaboration with CSCS and MeteoSwiss (Switzerland) in co-designing MV2-GDR and Cosmo Application

Cosmo model: http://www2.cosmo-model.org/content

/tasks/operational/meteoSwiss/

mailto:panda@cse.ohio-state.edu
http://www2.cosmo-model.org/content
mailto:panda@cse.ohio-state.edu
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Need for Non-Uniform Memory Allocation in OpenSHMEM for 
Heterogeneous Architectures

• MIC cores have limited 

memory per core

• OpenSHMEM relies on 

symmetric memory, 

allocated using shmalloc()

• shmalloc() allocates same amount of memory on all PEs

• For applications running in symmetric mode, this limits the total heap size

• Similar issues for applications (even host-only) with memory load imbalance 

(Graph500, Out-of-Core Sort, etc.)

• How to allocate different amounts of memory on host and MIC cores, and still be 

able to communicate?

MIC MemoryHost Memory

Host Cores MIC Cores

Memory per core
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OpenSHMEM Design for MIC Clusters

OpenSHMEM 
Applications

Multi/Many-Core Architectures 
with memory heterogeneity

MVAPICH2-X OpenSHMEM Runtime

InfiniBand Networks

OpenSHMEM 
Programming Model

InfiniBand 
Channel

SCIF Channel
Shared Memory/

CMA Channel

Proxy based Communication 

Extensions

Application
Co-Design

Symmetric Memory Manager

• Non-Uniform Memory Allocation:

– Team-based Memory Allocation 

(Proposed Extensions)

– Address Structure for non-uniform memory allocations 

void shmem_team_create(shmem_team_t team, int *ranks,               

int size, shmem_team_t *newteam);

void shmem_team_destroy(shmem_team_t *team);

void shmem_team_split(shmem_team_t team, int color, 

int key, shmem_team_t *newteam);

int shmem_team_rank(shmem_team_t team);

int shmem_team_size(shmem_team_t team);

void *shmalloc_team (shmem_team_t team, size_t size);

void shfree_team(shmem_team_t team, void *addr);
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HOST2

Proxy-based Designs for OpenSHMEM

OpenSHMEM Put using Active Proxy OpenSHMEM Get using Active Proxy

HOST1

MIC1
H
C
A

HOST2

MIC2
H
C
A

(1) IB REQ

(2) SCIF 
Read

(2) IB 
Write

(3) IB
FIN

HOST1

MIC1
H
C
A

MIC2
H
C
A

(3) IB 
FIN

(2) SCIF 
Read

(2) IB 
Write

(1) IB 
REQ

• Current generation architectures impose limitations on read bandwidth when HCA 
reads from MIC memory

– Impacts both put and get operation performance

• Solution: Pipelined data transfer by proxy running on host using IB and SCIF channels

• Improves latency and bandwidth!
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OpenSHMEM Put/Get Performance

OpenSHMEM Put Latency OpenSHMEM Get Latency
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• Proxy-based designs alleviate hardware limitations

• Put Latency of 4M message: Default: 3911us, Optimized: 838us

• Get Latency of 4M message: Default: 3889us, Optimized: 837us

4.5X 4.6X
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Performance Evaluations using Graph500

Native Mode (8 procs/MIC) Symmetric Mode (16 Host+16MIC)

• Graph500 Execution Time (Native Mode): 
– 8 processes per MIC node

– At 512 processes , Default: 5.17s, Optimized: 4.96s

– Performance Improvement from MIC-aware collectives design

• Graph500 Execution Time (Symmetric Mode): 
– 16 processes on each Host and  MIC node

– At 1,024 processes, Default: 15.91s, Optimized: 12.41s

– Performance Improvement from MIC-aware collectives and proxy-based designs
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Graph500 Evaluations with Extensions

• Redesigned Graph500 using MIC to overlap computation/communication
– Data Transfer to MIC memory; MIC cores pre-processes received data

– Host processes traverses vertices, and sends out new vertices

• Graph500 Execution time at 1,024 processes: 
– 16 processes on each Host and  MIC node

– Host-Only: .33s, Host+MIC with Extensions: .26s

• Magnitudes of improvement compared to default symmetric mode
– Default Symmetric Mode: 12.1s, Host+MIC Extensions: 0.16s
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J. Jose, K. Hamidouche, X. Lu, S. Potluri, J. Zhang, K. Tomko and D. K. Panda, High Performance OpenSHMEM for Intel MIC Clusters: Extensions, 

Runtime Designs and Application Co-Design, IEEE International Conference on Cluster Computing (CLUSTER '14) (Best Paper Finalist)
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• Architectures for Exascale systems are evolving

• Exascale systems will be constrained by
– Power

– Memory per core

– Data movement cost

– Faults

• Programming Models, Runtimes and Middleware need to be designed for
– Scalability

– Performance

– Fault-resilience

– Energy-awareness

– Programmability

– Productivity

• High Performance and Scalable MPI+X libraries are needed

• Highlighted some of the approaches taken by the MVAPICH2 project

• Need continuous innovation to have the right MPI+X libraries for Exascale 
systems

Looking into the Future ….
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• Three Conference Tutorials (IB+HSE, IB+HSE Advanced, Big Data)

• HP-CAST

• Technical Papers (SC main conference; Doctoral Showcase; Poster; PDSW-
DISC, PAW, COMHPC, and ESPM2 Workshops)

• Booth Presentations (Mellanox, NVIDIA, NRL, PGAS)

• HPC Connection Workshop

• Will be stationed at Ohio Supercomputer Center/OH-TECH Booth (#1107)
– Multiple presentations and demos

• More Details from http://mvapich.cse.ohio-state.edu/talks/

OSU Team Will be Participating in Multiple Events at SC ‘16

http://mvapich.cse.ohio-state.edu/talks/
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panda@cse.ohio-state.edu, hamidouch@cse.ohio-state.edu

Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The MVAPICH Project
http://mvapich.cse.ohio-state.edu/

mailto:panda@cse.ohio-state.edu
mailto:hamidouch@cse.ohio-state.edu
http://nowlab.cse.ohio-state.edu/

