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• NVIDIA GPUs - main driving force for faster 
training of Deep Neural Networks (DNNs)

• The ImageNet Challenge - (ILSVRC)
– DNNs like AlexNet, ResNet, and VGG

– 90% of the ImageNet teams used GPUs in 2014*

– And, GPUs are growing in the HPC arena as well! 
– Top500 (June ‘19) 

– CPUs still dominates HPC arena and can be used 
for Deep Learning

Deep Learning, CPUs, and GPUs

*https://blogs.nvidia.com/blog/2014/09/07/imagenet/

https://www.top500.org/

Accelerator/CP Family
Performance Share

https://blogs.nvidia.com/blog/2014/09/07/imagenet/
https://www.top500.org/
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• Easily implement and experiment with Deep Neural Networks 
– Several Deep Learning (DL) frameworks have emerged

• Caffe, PyTorch, TensorFlow, MXNet, and counting....
– Focus on TensorFlow and PyTorch

• Most frameworks - optimized for NVIDIA GPUs–
– but CPU optimized implementations are also emerging

• Distributed Training support – still in infancy!

Deep Learning Frameworks
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• The most widely used framework open-sourced by Google

• Replaced Google’s DistBelief[1] framework

• Runs on almost all execution platforms available (CPU, GPU, TPU, Mobile, 
etc.)

• Very flexible but two major issues
– Performance compared to other frameworks

– Distributed Training support – fragmented (NCCL, MPI, Horovod, gRPC, etc.)

• https://github.com/tensorflow/tensorflow

Deep Learning and TensorFlow

Courtesy: https://www.tensorflow.org/
[1] Jeffrey Dean et al., “Large Scale Distributed Deep Networks”

https://static.googleusercontent.com/media/research.google.com/en//archive/large_deep_networks_nips2012.pdf

https://github.com/tensorflow/tensorflow
https://www.tensorflow.org/
https://static.googleusercontent.com/media/research.google.com/en/archive/large_deep_networks_nips2012.pdf
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• Deep Neural Network training consists of two phases
– Forward pass 

– Backward pass

• Training is a compute intensive task 
– Large datasets

– Complex and large Deep Learning Models

– Multiple iterations over dataset to reach SOTA

• Three approaches to Distribute DNN training
– Data Parallelism (focus of this paper)

– Model Parallelism

– Hybrid Parallelism 

Distributed DNN Training 

Data Parallelism Model Parallelism

Hybrid Parallelism
Courtesy: https://blog.skymind.ai/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks/
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• Most ML/DL frameworks – started single-node/single-GPU design
– Various multi-node design schemes have emerged since then!

• Distributed Training needs communication libraries to synchronize across nodes

• DL Frameworks
– Caffe – single-node

– Cognitive Toolkit – MPI-based from Day 1!

– TensorFlow and PyTorch with Horovod (focus of this paper)

• Communication Libraries for DL
– MPI Libraries: MVAPICH2, IntelMPI, OpenMPI

– NVIDIA NCCL (GPU only)

DL Frameworks and Communication Libraries 
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What is Allreduce? And How DL frameworks use it?

• A generic group communication pattern  – element-wise 
vector sum available to all participants in the group

• In the MPI world, we call it MPI_Allreduce

• Needed in DNN Training during gradient aggregation from 
different workers

– Horovod uses several optimization strategies like Tensor 
Fusion to overlap compute and computation 

• Horovod can be configured with MPI, IBM’s DDL, Facebook 
Gloo, and NCCL
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How to systemically characterize CPU-
based DNN Training using TensorFlow

and PyTorch at scale? And how to 
achieve best possible performance for 

different HPC systems?

Broad Challenge
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Research Challenges

Let’s characterize “Distributed Training on CPUs”! 

1. What is the 
impact of the 

number of cores of a 
CPU on

the performance of 
DNN Training?

2. Does the batch size 
(BS) used to train a DL 

model impact
the training performance 

on different CPU 
architectures?

3. Do single process (SP) 
per node and multiple 

processes
(MP) per node 

configurations exhibit 
different perfor-
mance behavior?

4. What are the 
performance trends 

for TensorFlow 
multiple nodes?
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Key Contributions

• Describe single-process (SP), multi-process (MP), and multi-node 
(MN) approach

• Highlight up to 1.47× better performance for MP approach over SP 
approach 

• Evaluate five DNN architectures at scale (128 Xeon Skylake nodes)

• Report 125× speedup on 128 nodes for ResNet-152 with MVAPICH2

• Summarize key insights gained from the systematic 
characterization
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Architecture Cluster Speed 
(GHz)

Cores Threads per 
core

Label

Skylake RI2 2.6 28 1 Skylake-1

Skylake Pitzer 2.4 40 1 Skylake-2

Skylake Stampede2 2.1 48 2 Skylake-3

Broadwell RI2 2.4 28 1 Broadwell

EPYC AMD-Cluster 2.0 32 4 EPYC

Evaluation Platforms

K80 RI2 - 4992(Dual 
socket )

- K80

P100 Owens - 3584 - P100

V100 Pitzer - Cuda: 5120
Tensor: 640

- V100
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• Deep Learning Frameworks
– Intel optimized TensorFlow (v1.12), -- details on the next slide

– TensorFlow v1.12 (for GPUs and AMD processors)

– PyTorch (v1.1)

• Horovod Distributed Training middleware

• MPI Library: MVAPICH2 

• Scripts: tf_cnn_benchmarks and Horovod’s
pytorch_synthetic_benchmarks

Software Libraries
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• Optimized by Intel for Intel Xeon CPUs

• Uses Math Kernel Library for Deep Neural Networks –(MKL-DNN)  primitives

• Can be installed easily using conda and pip 

• Performance of tf_cnn_benchmarks can be improved by tweaking
--num_intra_threads to set the number of TensorFlow’s intra-operator (intra-op 
threads)
--num_inter_threads to set the number of TensorFlow’s inter-operator (inter-op 
threads)

• https://github.com/Intel-tensorflow

Intel Optimized TensorFlow
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• Broadly, we perform four different types of experiments
1. Single Node Single Process (SP) Experiments

2. Single Node Multi-Process (MP) Experiments

3. Multi-Node Multi-Process (MN) Experiments

4. GPU vs. CPU Comparisons

• In the end, we provide useful guidelines to extract best performance 

Experimental Setup
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Single Node Single Process (SP) Experiments

ResNet-50 Training performance

• Different configurations lead to different performance trends

• Key Message: Process per node (PPN), Batch Size, and number of threads are tunable parameters

• Parameters need to be determined and tuned properly! 
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SP: Effect of Hyper-Threading

ResNet-50 Training 
performance

• Skylake-3 on Stampede2 is 
hyper-threaded (two 
threads per core)

• Possible to run TF on 96 
threads

• But, performance degrades 
beyond 48 threads

– Why?
• Depends on the size and 

type of DNN



The Ohio State University Booth 23Network Based Computing Laboratory High-Performance Deep Learning

Single Node Multi-Process (MP) Experiments

ResNet-152 Training performance

• BS=64, 4ppn is better

• BS=32, 8ppn is slightly better

• However, keeping effective batch size (EBS) low 
is more important! – Why? (DNN does not 
converge to SOTA when batch size is large)

ResNet-152 (SP vs. MP)

• MP is better for all effective batch sizes

• Up to 1.35X better performance for MP 
compared to SP for BS=64. 

1.35X
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• We use the best SP configuration to run Multi-node experiments

• Evaluate five models to identify common trends
– All models give near-linear scaling on both platforms

Multi-Node Multi-Process (MN) Experiments

Skylake-1 (28 cores) Skylake-2 (40 cores) 
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Multi-Node Multi-Process (MN): MP vs. SP?

Skylake-3 (48 cores, 96 
threads) 

• Scale—32 nodes

• MP-Tuned—up to 1.5X
better than SP 

• MP-Tuned—10% better 
than MP-Default

• Why MP-Tuned is 
better?

– Uses the best 
possible number of 
inter-op and intra-op 
threads
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Multi-Node Multi-Process (MN): TF vs. PyTorch
PyTorch

TensorFlow

• This is an early experience with 
PyTorch

• TensorFlow is up to 2.5X faster
than PyTorch for 128 Nodes.

• TensorFlow: up to 125X speedup 
for ResNet-152 on 128 nodes

• PyTorch: Scales well but overall 
lower performance than 
TensorFlow
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Multi-Node Multi-Process (MN): AMD Platform

EPYC for TensorFlow

• TensorFlow is 4X slower on EPYC 
compared to Skylake-3

• For EPYC, there is no optimized 
TensorFlow

EPYC for PyTorch

• PyTorch—better than TensorFlow

• Up to 19% better than TensorFlow on 
8 nodes. 
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TensorFlow and PyTorch: CPU vs. GPU

TensorFlow on GPUs vs. CPUs

• Inception-v4 : Skylake-3 up to 2.35X faster 
than K80s

• ResNet-101: V100s up to 3.32X faster than 
Skylake-3

Multi-Node: TensorFlow (TF) vs. PyTorch (PT)

• ResNet-50: PT slightly better TF

• ResNet-152, PT up to 12% better than TF



The Ohio State University Booth 29Network Based Computing Laboratory High-Performance Deep Learning

• Introduction

• Background

• Research Challenges

• Characterization Strategy
– Evaluation Platforms and Software Libraries

– Experimental setup

• Performance Evaluation

• Conclusion

Agenda



The Ohio State University Booth 30Network Based Computing Laboratory High-Performance Deep Learning

• In-depth Characterization for Distributed Training with TensorFlow and early 
results for PyTorch

– Experiments on five HPC clusters including Stampede2 and three different CPU 
architectures: Skylake, Broadwell, and AMD EPYC

– Single Node Single Process (SP) and Single Node Multi Process (MP) to determine 
best performance for single node experiments 

– Use best single-node configuration for multi-Node experiments 

– Up to 128 nodes to show DNN training scaling 

– GPU vs. CPU comparisons for both TensorFlow and PyTorch

• Guidelines for the DL Researchers to get best performance on CPU platforms

Conclusion
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• Why Hybrid parallelism?

– Data Parallel training has 
limits! 

• We propose HyPar-Flow

– An easy to use Hybrid 
parallel training framework

• Hybrid = Data + 
Model

– Supports Keras models and 
exploits TF 2.0 Eager 
Execution

– Exploits MPI for Point-to-
point and Collectives 

HyPar-Flow: Hybrid Parallelism for TensorFlow

*Awan et al., “HyPar-Flow: Exploiting MPI and Keras for Hybrid Parallel Training of TensorFlow models”, arXiv ’19. https://arxiv.org/pdf/1911.05146.pdf

Benchmarking large-models lead to better insights and ability to develop new approaches!

https://arxiv.org/pdf/1911.05146.pdf
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• HyPar-Flow: easy to use Hybrid parallel training framework
– Supports Keras models and exploits TF 2.0 Eager Execution

– Exploits MPI Pt-to-pt and Collectives for communication

HyPar-Flow: Design Overview

*Awan et al., “HyPar-Flow: Exploiting MPI and Keras for Hybrid Parallel Training of TensorFlow models”, arXiv ’19. https://arxiv.org/pdf/1911.05146.pdf

https://arxiv.org/pdf/1911.05146.pdf
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• CPU based results
– AMD EPYC

– Intel Xeon

• Excellent speedups for 
– VGG-19

– ResNet-110

– ResNet-1000 (1k layers)

• Able to train “future” models
– E.g. ResNet-5000 (a synthetic 

5000-layer model we 
benchmarked)

HyPar-Flow (HF): Hybrid Parallelism for TensorFlow

*Awan et al., “HyPar-Flow: Exploiting MPI and Keras for Hybrid Parallel Training of TensorFlow models”, arXiv ’19. https://arxiv.org/pdf/1911.05146.pdf

110x speedup on 128 Intel Xeon Skylake nodes (TACC Stampede2 Cluster)

https://arxiv.org/pdf/1911.05146.pdf
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Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

High Performance Deep Learning
http://hidl.cse.ohio-state.edu/

{jain.575, awan.10, anthony.301}@osu.edu, {subramon, panda}@cse.ohio-state.edu

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
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Multi-Node Multi-Process (MN): Tuning batch size 
Skylake-3: 128 nodes

• Impact of BS: 
depends on a DNN’s 
type and size

• ResNet-50: near-
linear increase in 
performance as 
batch size increases
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