
Python Micro-Benchmarks for Evaluating MPI Libraries
on HPC Systems

by Nawras Alnaasan

Network-Based Computing Laboratory

Dept. of Computer Science and Engineering , The Ohio State University

alnaasan.1@osu.edu

Talk at OSU Booth SC ’22

SC ‘22 2Network Based Computing Laboratory

• OMB is a benchmarking tool that aids in measuring the performance of

communication libraries on HPC systems with different configurations and hardware

• There is support for a variety of programming models and communication libraries

including MPI, OpenSHMEM, UPC, and UPC++

• It provides a variety of benchmarks including point-to-point, blocking/non-blocking

collectives, and one-sided communication primitives

• There is support for evaluation performance of data communication to/from NVIDIA

and AMD GPUs

• The aim of this talk is to provide an overview of recent Java and Python extensions

to OMB

OSU MPI Micro-Benchmarks (OMB) Suite

SC ‘22 3Network Based Computing Laboratory

• Java and Python extensions have been released as part of the OMB 6.0 release:

– https://mvapich.cse.ohio-state.edu/benchmarks/

• Instructions for using OMB for Java:

– User guide: https://mvapich.cse.ohio-state.edu/static/media/mvapich/README-OMB-J.txt

– Sample run:

• Instructions for using OMB for Python:

– User guide: https://mvapich.cse.ohio-state.edu/static/media/mvapich/README-OMB-PY.txt

– Sample run:

Python and Java Extensions to OMB

https://mvapich.cse.ohio-state.edu/benchmarks/
https://mvapich.cse.ohio-state.edu/static/media/mvapich/README-OMB-J.txt
https://mvapich.cse.ohio-state.edu/static/media/mvapich/README-OMB-PY.txt

SC ‘22 4Network Based Computing Laboratory

High Performance Computing with Python

• Python has become a dominant programming language for emerging areas like

Machine Learning (ML), Deep Learning (DL), and Data Science (DS).

• Python has a rapidly growing community and support for prominent scientific libraries

and frameworks with a flexible and simplified syntax.

• ML, DL, and DS applications are computationally intensive tasks that can be

accelerated by harnessing the compute power offered by HPC.

Courtesy: https://towardsdatascience.com/best-python-libraries-for-machine-learning-and-deep-learning-b0bd40c7e8c

SC ‘22 5Network Based Computing Laboratory

Why Python?
Flexible and simplified syntax.

Image source: https://www.hardikp.com/2017/12/30/python-cpp/

SC ‘22 6Network Based Computing Laboratory

MPI for Python
• Message Passing Interface (MPI) is considered

the de-facto standard that defines
communication operations for exchanging data
in parallel computing environments.

• The MPI standard only provides bindings for
the C and Fortran programming languages.

• To use MPI with higher-level programming
languages such as Python, a communication
wrapper library is needed to provide MPI-like
bindings.

• mpi4py is a widely used package that provides
a Python-based MPI interface which is built on
top of an MPI library.

C and Fortran can directly call MPI operations whereas Python needs

a wrapper to provide MPI-like bindings.

SC ‘22 7Network Based Computing Laboratory

Package Comparison
• Design and implementation of OMB-Py—a Python extensions to the open-source OMB suite—aimed to

evaluate communication performance of MPI-based parallel applications in Python.

• Performance characterization of MPI communication in Python on four HPC systems:

– Point-to-point and collective communication operations using OMB as a baseline performance in C.

– Evaluation on CPU and GPU devices for different buffers including Bytearrays, Numpy, CuPy, PyCUDA and Numba.

– Pickle method evaluation for serializing communicated objects.

• Analysis of the overhead presented by mpi4py over native MPI libraries.

[1] L. Dalcin, R. Paz, and M. Storti, MPI for Python, Journal of Parallel and Distributed Computing, 65(9):1108-1115, 2005. https://doi.org/10.1016/j.jpdc.2005.03.010

[2] “Sandia MPI Micro-Benchmark Suite (SMB).” http://www.cs.sandia.gov/smb/index.html

[3] “Intel MPI Benchmarks (IMB).” https://software.intel.com/en-us/articles/intel-mpi-benchmarks

Feature Comparison Between Benchmark Packages

SC ‘22 8Network Based Computing Laboratory

Hierarchy and Supported Benchmarks

Architectural hierarchy of OMB-Py with mpi4py, MPI, and HPC platforms

Point-to-Point, blocking collectives, and vector variant
benchmarks supported by the OMB-Py package

N. Alnaasan , A. Jain , A. Shafi , H. Subramoni , and DK Panda, OMB-Py: Python Micro-Benchmarks for Evaluating Performance of MPI Libraries on HPC Systems

SC ‘22 9Network Based Computing Laboratory

Benchmarking and Sample Run

Algorithm for Blocking Send/Recv Latency Benchmark Sample output of point-to-point blocking latency test

• Maintained similar

approach to OMB but in

Python for fair

comparison.

• MPI_Barrier() guarantees

that both sender and

receiver processes start at

the same time.

• Latency is averaged

across multiple iterations.

• MPI_Reduce() is used to

aggregate averages

across all participating

processes.

Users can customize their runs by

using runtime flags:

• Device: either CPU or GPU

device on each node.

• Buffer: can choose from a

list of Python objects

including Numpy, CuPy,

PyCUDA, Numba, etc.

• Message size: define lower

and upper limits for

message sizes to report.

• Number of iterations:

number of times the tested

operation is executed.

N. Alnaasan , A. Jain , A. Shafi , H. Subramoni , and DK Panda, OMB-Py: Python Micro-Benchmarks for Evaluating Performance of MPI Libraries on HPC Systems

SC ‘22 10Network Based Computing Laboratory

Experimental Setup

Frontera Stampede2 RI2 Bridges-2

CPU
Two Intel Xeon Platinum
8280 (Cascade Lake). 28
cores per socket (56 per

node) @2.70GHz

Two Intel(R) Xeon(R)
Platinum 8160 (Skylake).
24 cores per socket (48

per noe) @2.70GHz

Two Intel(R) Xeon(R) Gold
6132 with 14 cores (28

cores per node)
@2.40GHz.

Two Intel Xeon Gold 6248
(Cascade Lake). 20 cores
per socket (40 cores per

node) @ 2.50GHz

RAM 192GB of RAM per node. 192GB of RAM per node. 128GB of RAM per node 512GB of RAM per node.

Interconnect Mellanox InfiniBand HDR Intel Omni-Path Mellanox InfiniBand Mellanox InfiniBand HDR

GPU N/A N/A N/A
Eight NVIDIA Tesla V100-

32GB SXM2 per node

Configuration of nodes used on each of the experimental systems

Software packages:

• For CPU experiments: MVAPICH2 2.3.6, OMB v5.8, mpi4py 3.1.1

• For GPU experiments: MVPICH2-GDR 2.3.6, CUDA 11.2, OMB v5.8, mpi4py 3.1.1
N. Alnaasan , A. Jain , A. Shafi , H. Subramoni , and DK Panda, OMB-Py: Python Micro-Benchmarks for Evaluating Performance of MPI Libraries on HPC Systems

SC ‘22 11Network Based Computing Laboratory

Point-to-Point Evaluation on CPU

Frontera

• Consistent trends

across three clusters.

• Average overhead of

0.44, 0.41, and 0.41 on

Frontera, Stampede2,

and RI2 respectively for

small message sizes

and 2.31, 4.13, 1.76

microseconds for large

message sizes.

Stampede2

RI2

CPU communication latency for small and large message sizes comparing OMB and OMB-Py benchmarks

SC ‘22 12Network Based Computing Laboratory

Collectives Evaluation on CPU

Average overheads of 0.93

and 0.92 microseconds for

Allreduce and Allgather

respectively for small

message sizes. 14.13 and

23.4 for large message

sizes.

Allreduce CPU communication latency for small and large message sizes on 16 nodes on the Frontera Cluster

Allgather CPU communication latency for small and large message sizes on 16 nodes on the Frontera Cluster

N. Alnaasan , A. Jain , A. Shafi , H. Subramoni , and DK Panda, OMB-Py: Python Micro-Benchmarks for Evaluating Performance of MPI Libraries on HPC Systems

SC ‘22 13Network Based Computing Laboratory

Evaluation on GPU

Point-to-Point GPU communication latency for small and large message sizes on Bridges-2

Allreduce GPU communication latency for small and large message sizes on Bridges-2 (2 nodes – 8 GPUs)

Allgather GPU communication latency for small and large message sizes on Bridges-2 (2 nodes – 8 GPUs)

CuPy, PyCUDA, and Numba libraries
allow initializing different types of data
buffers directly on the GPU to carry out
complex matrix operations. In these
benchmarks, communication happens
directly from/to the GPU by utilizing
these GPU buffers.

Across all benchmarks, CuPy and
PyCUDA show better MPI
communication performance on the
GPU compared to Numba.

SC ‘22 14Network Based Computing Laboratory

Pickle Method Evaluation

• mpi4py offers a built-in feature for serialization of the communicated Python objects.

• This is mainly referred to as “pickling” when an object is converted into a byte stream and

“unpickling” when it is converted back to its original format.

• In mpi4py, the MPI methods that use the pickle method are defined with a lower case first letter

such as send(), recv(), reduce(), allgather, etc. The direct buffer methods (no serialization) are

defined with upper case first letter such as Send(), Recv(), Reduce(), Allgather(), etc.

CPU latency for small and large message sizes using OMB-Py to compare the pickle and direct buffer methods on Frontera

N. Alnaasan , A. Jain , A. Shafi , H. Subramoni , and DK Panda, OMB-Py: Python Micro-Benchmarks for Evaluating Performance of MPI Libraries on HPC Systems

SC ‘22 15Network Based Computing Laboratory

Overhead Analysis
• In order to determine the source of overhead caused by the Python/Cython layer over the native MPI libraries, we

perform comprehensive profiling of the mpi4py Allreduce function for the CuPy, Numba, and PyCUDA buffers.

• The Allreduce function in mpi4py consists of two phases: 1) a staging phase to perform checks and links of the Python
send and receive buffers in Cython, 2) an execution phase which mainly calls the implementation of the MP operation
provided by the underlying MPI library.

• The following analysis shows that 80% to 90% of the overall overhead is spent on preparing the send and receive buffers.

Allreduce GPU overhead analysis using CuPy, Numba, and PyCUDA buffers on 16 GPUs (2 nodes - 8 GPUs per node) on the Bridges-2 cluster

SC ‘22 16Network Based Computing Laboratory

Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

High Performance Deep Learning
http://hidl.cse.ohio-state.edu/

alnaasan.1@osu.edu

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/

