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• OMB is a benchmarking tool that aids in measuring the performance of 

communication libraries on HPC systems with different configurations and hardware

• There is support for a variety of programming models and communication libraries 

including MPI, OpenSHMEM, UPC, and UPC++

• It provides a variety of benchmarks including point-to-point, blocking/non-blocking 

collectives, and one-sided communication primitives

• There is support for evaluation performance of data communication to/from NVIDIA 

and AMD GPUs

• The aim of this talk is to provide an overview of recent Java and Python extensions 

to OMB

OSU MPI Micro-Benchmarks (OMB) Suite
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• Java and Python extensions have been released as part of the OMB 6.0 release:

– https://mvapich.cse.ohio-state.edu/benchmarks/

• Instructions for using OMB for Java:

– User guide: https://mvapich.cse.ohio-state.edu/static/media/mvapich/README-OMB-J.txt

– Sample run:

• Instructions for using OMB for Python:

– User guide: https://mvapich.cse.ohio-state.edu/static/media/mvapich/README-OMB-PY.txt

– Sample run: 

Python and Java Extensions to OMB

https://mvapich.cse.ohio-state.edu/benchmarks/
https://mvapich.cse.ohio-state.edu/static/media/mvapich/README-OMB-J.txt
https://mvapich.cse.ohio-state.edu/static/media/mvapich/README-OMB-PY.txt
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High Performance Computing with Python

• Python has become a dominant programming language for emerging areas like 

Machine Learning (ML), Deep Learning (DL), and Data Science (DS).

• Python has a rapidly growing community and support for prominent scientific libraries 

and frameworks with a flexible and simplified syntax.

• ML, DL, and DS applications are computationally intensive tasks that can be 

accelerated by harnessing the compute power offered by HPC.

Courtesy: https://towardsdatascience.com/best-python-libraries-for-machine-learning-and-deep-learning-b0bd40c7e8c
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Why Python?
Flexible and simplified syntax.

Image source: https://www.hardikp.com/2017/12/30/python-cpp/ 
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MPI for Python
• Message Passing Interface (MPI) is considered 

the de-facto standard that defines 
communication operations for exchanging data 
in parallel computing environments.

• The MPI standard only provides bindings for 
the C and Fortran programming languages.

• To use MPI with higher-level programming 
languages such as Python, a communication 
wrapper library is needed to provide MPI-like 
bindings.

• mpi4py is a widely used package that provides 
a Python-based MPI interface which is built on 
top of an MPI library.

C and Fortran can directly call MPI operations whereas Python needs 

a wrapper to provide MPI-like bindings.
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Package Comparison
• Design and implementation of OMB-Py—a Python extensions to the open-source OMB suite—aimed to 

evaluate communication performance of MPI-based parallel applications in Python. 

• Performance characterization of MPI communication in Python on four HPC systems:

– Point-to-point and collective communication operations using OMB as a baseline performance in C.

– Evaluation on CPU and GPU devices for different buffers including Bytearrays, Numpy, CuPy, PyCUDA and Numba.

– Pickle method evaluation for serializing communicated objects.

• Analysis of the overhead presented by mpi4py over native MPI libraries.

[1] L. Dalcin, R. Paz, and M. Storti, MPI for Python, Journal of Parallel and Distributed Computing, 65(9):1108-1115, 2005. https://doi.org/10.1016/j.jpdc.2005.03.010

[2] “Sandia MPI Micro-Benchmark Suite (SMB).” http://www.cs.sandia.gov/smb/index.html

[3] “Intel MPI Benchmarks (IMB).” https://software.intel.com/en-us/articles/intel-mpi-benchmarks 

Feature Comparison Between Benchmark Packages 
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Hierarchy and Supported Benchmarks

Architectural hierarchy of OMB-Py with mpi4py, MPI, and HPC platforms

Point-to-Point, blocking collectives, and vector variant 
benchmarks supported by the OMB-Py package

N. Alnaasan , A. Jain , A. Shafi , H. Subramoni , and DK Panda, OMB-Py: Python Micro-Benchmarks for Evaluating Performance of MPI Libraries on HPC Systems
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Benchmarking and Sample Run

Algorithm for Blocking Send/Recv Latency Benchmark Sample output of point-to-point blocking latency test

• Maintained similar 

approach to OMB but in 

Python for fair 

comparison.

• MPI_Barrier() guarantees 

that both sender and 

receiver processes start at 

the same time.

• Latency is averaged 

across multiple iterations.

• MPI_Reduce() is used to 

aggregate averages 

across all participating 

processes.

Users can customize their runs by 

using runtime flags:

• Device: either CPU or GPU 

device on each node.

• Buffer: can choose from a 

list of Python objects 

including Numpy, CuPy, 

PyCUDA, Numba, etc.

• Message size: define lower 

and upper limits for 

message sizes to report.

• Number of iterations: 

number of times the tested 

operation is executed.

N. Alnaasan , A. Jain , A. Shafi , H. Subramoni , and DK Panda, OMB-Py: Python Micro-Benchmarks for Evaluating Performance of MPI Libraries on HPC Systems
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Experimental Setup

Frontera Stampede2 RI2 Bridges-2

CPU
Two Intel Xeon Platinum 
8280 (Cascade Lake). 28 
cores per socket (56 per 

node) @2.70GHz

Two Intel(R) Xeon(R) 
Platinum 8160 (Skylake). 
24 cores per socket (48 

per noe) @2.70GHz

Two Intel(R) Xeon(R) Gold 
6132 with 14 cores (28 

cores per node) 
@2.40GHz.

Two  Intel Xeon Gold 6248 
(Cascade Lake). 20 cores 
per socket (40 cores per 

node) @ 2.50GHz

RAM 192GB of RAM per node. 192GB of RAM per node. 128GB of RAM per node 512GB of RAM per node.

Interconnect Mellanox InfiniBand HDR Intel Omni-Path Mellanox InfiniBand Mellanox InfiniBand HDR

GPU N/A N/A N/A
Eight NVIDIA Tesla V100-

32GB SXM2 per node

Configuration of nodes used on each of the experimental systems

Software packages:

• For CPU experiments: MVAPICH2 2.3.6, OMB v5.8, mpi4py 3.1.1 

• For GPU experiments: MVPICH2-GDR 2.3.6, CUDA 11.2, OMB v5.8, mpi4py 3.1.1
N. Alnaasan , A. Jain , A. Shafi , H. Subramoni , and DK Panda, OMB-Py: Python Micro-Benchmarks for Evaluating Performance of MPI Libraries on HPC Systems
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Point-to-Point Evaluation on CPU

Frontera

• Consistent trends 

across three clusters. 

• Average overhead of 

0.44, 0.41, and 0.41 on 

Frontera, Stampede2, 

and RI2 respectively for 

small message sizes 

and 2.31, 4.13, 1.76 

microseconds for large 

message sizes.

Stampede2

RI2

CPU communication latency for small and large message sizes comparing OMB and OMB-Py benchmarks
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Collectives Evaluation on CPU

Average overheads of 0.93 

and 0.92 microseconds for 

Allreduce and Allgather

respectively for small 

message sizes. 14.13 and 

23.4  for large message 

sizes.

Allreduce CPU communication latency for small and large message sizes on 16 nodes on the Frontera Cluster 

Allgather CPU communication latency for small and large message sizes on 16 nodes on the Frontera Cluster 

N. Alnaasan , A. Jain , A. Shafi , H. Subramoni , and DK Panda, OMB-Py: Python Micro-Benchmarks for Evaluating Performance of MPI Libraries on HPC Systems
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Evaluation on GPU 

Point-to-Point GPU communication latency for small and large message sizes on Bridges-2

Allreduce GPU communication latency for small and large message sizes on Bridges-2 (2 nodes – 8 GPUs)

Allgather GPU communication latency for small and large message sizes on Bridges-2 (2 nodes – 8 GPUs)

CuPy, PyCUDA, and Numba libraries 
allow initializing different types of data 
buffers directly on the GPU to carry out 
complex matrix operations. In these 
benchmarks, communication happens 
directly from/to the GPU by utilizing 
these GPU buffers.

Across all benchmarks, CuPy and 
PyCUDA show better MPI 
communication performance on the 
GPU compared to Numba.
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Pickle Method Evaluation

• mpi4py offers a built-in feature for serialization of the communicated Python objects.

• This is mainly referred to as “pickling” when an object is converted into a byte stream and 

“unpickling” when it is converted back to its original format. 

• In mpi4py, the MPI methods that use the pickle method are defined with a lower case first letter 

such as send(), recv(), reduce(), allgather, etc. The direct buffer methods (no serialization) are 

defined with upper case first letter such as Send(), Recv(), Reduce(), Allgather(), etc.

CPU latency for small and large message sizes using OMB-Py to compare the pickle and direct buffer methods on Frontera

N. Alnaasan , A. Jain , A. Shafi , H. Subramoni , and DK Panda, OMB-Py: Python Micro-Benchmarks for Evaluating Performance of MPI Libraries on HPC Systems
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Overhead Analysis
• In order to determine the source of overhead caused by the Python/Cython layer over the native MPI libraries, we 

perform comprehensive profiling of the mpi4py Allreduce function for the CuPy, Numba, and PyCUDA buffers.

• The Allreduce function in mpi4py consists of two phases: 1) a staging phase to perform checks and links of the Python 
send and receive buffers in Cython, 2) an execution phase which mainly calls the implementation of the MP operation 
provided by the underlying MPI library.

• The following analysis shows that 80% to 90% of the overall overhead is spent on preparing the send and receive buffers.

Allreduce GPU overhead analysis using CuPy, Numba, and PyCUDA buffers on 16 GPUs (2 nodes - 8 GPUs per node) on the Bridges-2 cluster
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Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

High Performance Deep Learning
http://hidl.cse.ohio-state.edu/

alnaasan.1@osu.edu

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/

