RDMA for Apache Hadoop 3.x 0.9.1 User Guide

HIGH-PERFORMANCE BI1G DATA TEAM
http://hibd.cse.ohio-state.edu

NETWORK-BASED COMPUTING LABORATORY
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
THE OHIO STATE UNIVERSITY

Copyright (c) 2011-2021
Network-Based Computing Laboratory,
headed by Dr. D. K. Panda.

All rights reserved.

Last revised: February 22, 2021

http://hibd.cse.ohio-state.edu

Contents

1 Overview of the RDMA for Apache Hadoop 3.x Project

2 Features
3 Setup Instructions
3.1 Prerequisites e e
3.2 Download e
33 Installation steps L e e e
3.4 BasicConfiguration e e e e e e
3.4.1 HDFS with Heterogeneous Storage (HHH)
342 HDFSinMemory (HHH-M)
3.5 Advanced Configuration L e
3.5.1 RDMA Device Selection
352 RDMAPort. e e
3.5.3 Max EndPoint Number
3.54 Packet Size for RDMA Write e
3.5.5 Placement Policy Selection
3.5.6 Automatic Placement Policy Selection
3.5.7 Threshold of RAM Disk Usage
3.5.8 No. of In-Memory Replicas
4 Basic Usage Instructions
4.1 Startup o e e e
4.1.1 MapReduceover HDFS
4.2 BasicCommands e
4.3 Shutdown e e
43.1 MapReduceover HDFS
5 Running RDMA for Apache Hadoop with SLURM/PBS
5.1 USage . . . o o e e e
5.1.1 Configure and Starta HadoopJob
5.1.2 Shutdown Hadoop Cluster,
52 Running MapReduce over HDFS with SLURM/PBS
521 Startup e e e
5.2.2 Running Benchmarks
523 Shutdown e e e e
5.2.4 Running Benchmarks
525 Shutdown e e e e
6 Benchmarks
6.1 TestDESIO e e
6.2 SOt . o e e e
6.3 TeraSort e e
6.4 OHB Micro-benchmarks

11
11
11
11
15
15

15
16
16
17
17
18
18
18
18
19

RDMA for Apache Hadoop 3.x Network-Based Computing Laboratory, The Ohio State University

1 Overview of the RDMA for Apache Hadoop 3.x Project

RDMA for Apache Hadoop 3.x is a high-performance design of Hadoop over RDMA-enabled Interconnects.
This version of RDMA for Apache Hadoop 3.x 0.9.1 is based on Apache Hadoop 3.0.0 and is compliant with
Apache Hadoop 3.0.0.This file is intended to guide users through the various steps involved in installing,
configuring, and running RDMA for Apache Hadoop 3.x over InfiniBand.

In this package, many different modes have been included that can be enabled/disabled to obtain perfor-
mance benefits for different kinds of applications in different Hadoop environments.

Following are the different modes that are included in our package.

HHH: Heterogeneous storage devices with hybrid replication schemes are supported in this mode of opera-
tion to have better fault-tolerance as well as performance. This mode is enabled by default in the package.

HHH-M: A high-performance in-memory based setup has been introduced in this package that can be uti-
lized to perform all I/O operations in-memory and obtain as much performance benefit as possible.

Running with Slurm and PBS: Supports deploying RDMA for Apache Hadoop 3.x with Slurm and PBS
in different running modes (HHH and HHH-M).

If there are any questions, comments or feedback regarding this software package, please post them to
rdma-hadoop-discuss mailing list (rdma-hadoop-discuss @cse.ohio-state.edu).

2 Features
High-level features of RDMA for Apache Hadoop 3.x 0.9.1 are listed below.

e Based on Apache Hadoop 3.0.0
e Compliant with Apache Hadoop 3.0.0 APIs and applications
e Support for RDMA Device Selection

e High performance design with native InfiniBand and RoCE support at the verbs level for HDFS com-
ponent

e Supports deploying Hadoop with Slurm and PBS in different running modes (HHH and HHH-M)

e Easily configurable for different running modes (HHH and HHH-M) and different protocols (native
InfiniBand, RoCE, and IPoIB)

e On-demand connection setup
e HDFS over native InfiniBand and RoCE

— RDMA-based write
— RDMA-based replication

— Overlapping in different stages of write and replication

RDMA for Apache Hadoop 3.x Network-Based Computing Laboratory, The Ohio State University

— Enhanced hybrid HDFS design with in-memory and heterogeneous storage (HHH)

* Supports two modes of operations
- HHH (default) with I/O operations over RAM disk, SSD, and HDD
- HHH-M (in-memory) with I/O operations in-memory
+ Policies to efficiently utilize heterogeneous storage devices (RAM Disk, SSD, and HDD)
- Greedy and Balanced policies support
- Automatic policy selection based on available storage types
+ Hybrid replication (in-memory and persistent storage) for HHH default mode
* Memory replication (in-memory only with lazy persistence) for HHH-M mode
- No HDFS replication
- Reduced local storage space usage

e Tested with

Mellanox InfiniBand adapters (DDR, QDR, FDR, and EDR)
RoCE support with Mellanox adapters

RAM Disks, SSDs, and HDDs

OpenJDK and IBM JDK

3 Setup Instructions

3.1 Prerequisites
Prior to the installation of RDMA for Apache Hadoop 3.x, please ensure that you have the latest version

of JDK installed on your system, and set the JAVA_HOME and PATH environment variables to point to the
appropriate JDK installation. We recommend the use of JDK version 1.8 and later.

In order to use the RDMA-based features provided with RDMA for Apache Hadoop 3.x, install the latest
version of the OFED distribution that can be obtained from http://www.openfabrics.org.

3.2 Download

Download the most recent distribution tarball of RDMA for Apache Hadoop package for x86 clusters from
http://hibd.cse.ohio-state.edu/download/hibd/rdma-hadoop-3.x-0.9.1-x86-bin.
tar.gz.

3.3 Installation steps
Following steps can be used to install the RDMA for Apache Hadoop package.

1. Unzip the RDMA for Apache Hadoop distribution tarball using the following command:

http://www.openfabrics.org
http://hibd.cse.ohio-state.edu/download/hibd/rdma-hadoop-3.x-0.9.1-x86-bin.tar.gz
http://hibd.cse.ohio-state.edu/download/hibd/rdma-hadoop-3.x-0.9.1-x86-bin.tar.gz

RDMA for Apache Hadoop 3.x Network-Based Computing Laboratory, The Ohio State University

tar zxf rdma-hadoop-3.x-0.9.1-x86-bin.tar.gz

2. Change directory to rdma-hadoop-3.x-0.9.1-x86
cd rdma-hadoop—-3.x-0.9.1-x86

3.4 Basic Configuration

The configuration files can be found in the directory rdma-hadoop—-3.x-0.9.1-x86/etc/hadoop,
in the RDMA for Apache Hadoop package.

3.4.1 HDFS with Heterogeneous Storage (HHH)

Steps to configure RDMA for Apache Hadoop 3.x include:

1. Configure hadoop—env. sh file.

export JAVA_HOME=/opt/java/1.8.0

2. Configure core-site.xml file. RDMA for Apache Hadoop 3.x 0.9.1 supports three different
modes: IB, RoCE, and TCP/IP.

Configuration of the IB mode:

<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://node001:9000</value>
<description>NameNode URI.</description>
</property>

<property>
<name>hadoop.ib.enabled</name>
<value>true</value>
<description>Enable the RDMA feature over IB. Default wvalue of
hadoop.ib.enabled is true.</description>
</property>

<property>
<name>hadoop.roce.enabled</name>
<value>false</value>
<description>Disable the RDMA feature over RoCE. Default value
of hadoop.roce.enabled is false.</description>
</property>
</configuration>

RDMA for Apache Hadoop 3.x Network-Based Computing Laboratory, The Ohio State University

Configuration of the RoCE mode:

<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://node001:9000</value>
<description>NameNode URI.</description>
</property>

<property>
<name>hadoop.ib.enabled</name>
<value>false</value>
<description>Disable the RDMA feature over IB. Default value of
hadoop.ib.enabled is true.</description>
</property>

<property>
<name>hadoop.roce.enabled</name>
<value>true</value>
<description>Enable the RDMA feature over RoCE. Default value of
hadoop.roce.enabled is false.</description>
</property>
</configuration>

Configuration of the TCP/IP mode:

<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://node001:9000</value>
<description>NameNode URI.</description>
</property>

<property>
<name>hadoop.ib.enabled</name>
<value>false</value>
<description>Disable the RDMA feature over IB. Default value of
hadoop.ib.enabled is true.</description>
</property>

<property>
<name>hadoop.roce.enabled</name>
<value>false</value>
<description>Disable the RDMA feature over RoCE. Default value
of hadoop.roce.enabled is false.</description>
</property>
</configuration>

RDMA for Apache Hadoop 3.x Network-Based Computing Laboratory, The Ohio State University

Note that we should not enable “hadoop.ib.enabled” and “hadoop.roce.enabled” at the same time.

3. Configure hdfs-site.xml file.

<configuration>
<property>
<name>dfs.namenode.name.dir</name>
<value>file:///home/hadoop/rdma-hadoop-3.x-0.9.1-x86/Name</value>
<description>Path on the local filesystem where the NameNode
stores the namespace and transactions logs
persistently.</description>
</property>

<property>
<name>dfs.datanode.data.dir</name>
<value>[RAM _DISK]file:///data0l, [SSD]file:///datal2,
[DISK]file:///data03</value>
<description>Comma separated list of paths of the local storage
devices with corresponding types on a DataNode where it
should store its blocks.</description>
</property>
</configuration>

4. Configure yarn—-site.xml file.

<configuration>
<property>
<name>yarn.resourcemanager.address</name>
<value>node001:8032</value>
<description>ResourceManager host:port for clients to submit
jobs.</description>
</property>

<property>
<name>yarn.resourcemanager.scheduler.address</name>
<value>node001:8030</value>
<description>ResourceManager host:port for ApplicationMasters to
talk to Scheduler to obtain resources.</description>
</property>

<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>node001:8031</value>
<description>ResourceManager host:port for
NodeManagers.</description>
</property>

RDMA for Apache Hadoop 3.x Network-Based Computing Laboratory, The Ohio State University

<property>
<name>yarn.resourcemanager.admin.address</name>
<value>node001:8033</value>
<description>ResourceManager host:port for administrative
commands.</description>
</property>

<property>
<name>yarn.nodemanager.aux—-services</name>
<value>mapreduce_shuffle</value>
<description>Shuffle service that needs to be set for MapReduce
applications.</description>
</property>
</configuration>

5. Configure mapred-site.xml file.

<configuration>
<property>
<name>mapreduce. framework .name</name>
<value>yarn</value>
<description>Execution framework set to Hadoop
YARN.</description>
</property>

<property>
<name>yarn.app.mapreduce.am.command-opts</name>
<value>-Xmx1024m —-Dhadoop.conf.dir=${HADOOP_CONF_DIR}</value>
<description>Java opts for the MR App Master processes. The
following symbol, if present, will be interpolated: (@taskidd
is replaced by current TaskID. Any other occurrences of '@’
will go unchanged. For example, to enable verbose gc logging
to a file named for the taskid in /tmp and to set the heap
maximum to be a gigabyte, pass a ’'value’ of: -Xmx1024m
-verbose:gc -Xloggc:/tmp/@taskid@.gc
Usage of -Djava.library.path can cause programs to no longer
function if hadoop native libraries are used. These values
should instead be set as part of LD_LIBRARY_PATH in the map /
reduce JVM env using the mapreduce.map.env and
mapreduce.reduce.env config settings.
</description>
</property>

<property>
<name>yarn.app.mapreduce.am.env</name>
<value>HADOOP_MAPRED_HOME=S$ {HADOOP_HOME}, LD_LIBRARY_PATH=

RDMA for Apache Hadoop 3.x Network-Based Computing Laboratory, The Ohio State University

S {HADOOP_HOME}/lib/native:${LD_LIBRARY_PATH}</value>
<description>User added environment variables for the MR App
Master
processes. Example
1) A=foo This will set the env variable A to foo
2) B=S$B:c This is inherit tasktracker’s B env variable.
</description>
</property>
<property>
<name>mapreduce.map.env</name>
<value>HADOOP_MAPRED_HOME=S$ {HADOOP_HOME }, LD_LIBRARY_PATH=
S {HADOOP_HOME}/lib/native:${LD_LIBRARY_PATH}</value>
</property>
<property>
<name>mapreduce.reduce.env</name>
<value>HADOOP_MAPRED_HOME=S$ {HADOOP_HOME}, LD_LIBRARY_ PATH=
${HADOOP_HOME}/lib/native:${LD_LIBRARY PATH}</value>
</property>

</configuration>

6. Configure workers file. List all worker hostnames in this file, one per line.

node002
node003

We can also configure more specific items according to actual needs. For example, we can configure
the item dfs.blocksize in hdfs-site.xml to change the HDFS block size. To get more
detailed information, please visit http://hadoop.apache.org

3.4.2 HDFS in Memory (HHH-M)

‘We can enable MapReduce over in-memory HDFS using the following configuration steps:

1. Configure hdfs-site.xml file.

<configuration>
<property>
<name>dfs.namenode.name.dir</name>
<value>file:///home/hadoop/rdma-hadoop-3.x-0.9.1-x86/Name</value>
<description>Path on the local filesystem where the NameNode
stores the namespace and transactions logs
persistently.</description>
</property>

<property>

http://hadoop.apache.org

RDMA for Apache Hadoop 3.x Network-Based Computing Laboratory, The Ohio State University

<name>dfs.datanode.data.dir</name>
<value>[RAM _DISK]file:///data0Ol, [SSD]file:///data02,
[DISK]file:///data03</value>
<description>Comma separated list of paths of the local storage
devices with corresponding types on a DataNode where it
should store its blocks.</description>
</property>

<property>
<name>dfs.rdma.hhh.mode</name>
<value>InMemory</value>
<description>Select In-Memory mode (HHH-M). </description>
</property>
</configuration>

2. Configure the yarn—-site.xml file as specified in Section 3.4.1.
3. Configure the mapred-site.xml file as specified in Section 3.4.1.
4. Configure the core-site.xml file as specified in Section 3.4.1.

5. Configure the s1aves file as specified in Section 3.4.1.

3.5 Advanced Configuration

Some advanced features in RDMA for Apache Hadoop 3.x 0.9.1 can be manually enabled by users. Steps to
configure these features in RDMA for Apache Hadoop 3.x 0.9.1 are discussed in this section.

3.5.1 RDMA Device Selection

Users can specify which RDMA device Hadoop should utilize in the case where more than one of such de-
vices is installed. Users can select the RDMA device to be used either by ID or by name in the core-site.xml
file. By default, RDMA for Apache Hadoop 3.x 0.9.1 will choose the device with ID 0 if none of the follow-
ing parameters are defined. Theses parameters are applicable for all modes.

<property>
<name>hadoop.rdma.dev.name</name>
<value>mlx4_0</value>
<description>Specify the name of the RDMA device to be used. This
takes precedence over hadoop.rdma.dev.num if both are set.
</description>
</property>

<property>
<name>hadoop.rdma.dev.num</name>
<value>0</value>

RDMA for Apache Hadoop 3.x Network-Based Computing Laboratory, The Ohio State University

<description>Specify the ID of the RDMA device to be used.
</description>
</property>

3.5.2 RDMA Port

Users can specify which port Hadoop should listen for establishing RDMA connections by configuring
hdfs-site.xml file. By default, RDMA for Apache Hadoop 3.x 0.9.1 will listen on 9999. This parameter
is applicable for all modes.

<property>
<name>dfs.datanode.rdma.port</name>
<value>12345</value>
<description>Specify the port to be used for establishing RDMA
connections (default is 9999) .</description>
</property>

3.5.3 Max EndPoint Number

Users can specify the max number of end points attached to each RDMA context by configuring hdfs-site.xml
file. This parameter is applicable for all modes.

<property>
<name>dfs.rdma.max-ep-num</name>
<value>16</value>
<description>Specify the max number of end points attached to each
RDMA context (default is 8).</description>
</property>

3.5.4 Packet Size for RDMA Write

Users can specify the packet size for RDMA write by configuring hdfs-site.xml file. This parameter is
applicable for all modes.

<property>
<name>dfs.rdma.client-write-packet-size</name>
<value>262400</value>
<description>Specify the packet size for RDMA write (default is
524800, i.e., 512KB) .</description>
</property>

RDMA for Apache Hadoop 3.x Network-Based Computing Laboratory, The Ohio State University

3.5.5 Placement Policy Selection

Select specific placement policy (Greedy or Balanced) in HDFS by configuring hdfs-site.xml file. By
default, RDMA for Apache Hadoop 3.x 0.9.1 selects policy automatically based on the storage types of the
HDEFS data directories. This parameter is applicable for HHH mode as discussed in Section 3.4.1.

<property>
<name>dfs.rdma.placement.policy</name>
<value>Greedy/Balanced</value>
<description>Enable specific data placement policy. </description>
</property>

3.5.6 Automatic Placement Policy Selection

By default, RDMA for Apache Hadoop 3.x 0.9.1 selects policy automatically based on the storage types
of the HDFS data directories. This parameter can be used if the user wants to disable automatic policy
detection. This parameter is applicable for HHH mode as discussed in Section 3.4.1.

<property>
<name>dfs.rdma.policy.autodetect</name>
<value>false</value>
<description>Disable automatic policy detection (default is
true) . </description>
</property>

In order to use the storage policies of default HDFS, users should not use the dfs.rdma.placement.policy
parameter as discussed in Section 3.5.5 and disable policy auto detection.

3.5.7 Threshold of RAM Disk Usage

Select a threshold of RAM Disk usage in HDFS by configuring hdfs-site.xml file. By default, RDMA
for Apache Hadoop 3.x 0.9.1 uses 70% of RAM Disk when RAM Disk is configured as a HDFS data direc-
tory. This parameter is applicable for HHH and HHH-M modes as discussed in Section 3.4.1, Section 3.4.2,
respectively.

<property>
<name>dfs.rdma.memory.percentage</name>
<value>0.5</value>
<description>Select a threshold (default = 0.7) for RAM Disk usage.
</description>
</property>

10

RDMA for Apache Hadoop 3.x Network-Based Computing Laboratory, The Ohio State University

3.5.8 No. of In-Memory Replicas

Select the number of in-memory replicas in HHH mode by configuring hdfs-site.xml file. By default,
RDMA for Apache Hadoop 3.x 0.9.1 writes two replicas to RAM Disk and one to persistent storage (repli-
cation factor = 3). The no. of in-memory replicas can be changed from one to no. of replication factor (all
in-memory). This parameter is applicable for HHH mode as discussed in Section 3.4.1.

<property>
<name>dfs.rdma.memory.replica</name>
<value>3</value>
<description>Select no. of in-memory replicas (default = 2).
</description>
</property>

4 Basic Usage Instructions

RDMA for Apache Hadoop 3.x 0.9.1 has management operations similar to default Apache Hadoop 3.0.0.
This section lists several of them for basic usage.

4.1 Startup
4.1.1 MapReduce over HDFS

To run MapReduce over HDFS with any of the modes (HHH/HHH-M), please follow these steps.

1. Use the following command to format the directory which stores the namespace and transactions logs
for NameNode.

S bin/hdfs namenode —-format

2. Start HDFS with the following command:

S sbin/start-dfs.sh

3. Start YARN with the following command:

$ sbin/start-yarn.sh

4.2 Basic Commands

1. Use the following command to manage HDFS:

11

RDMA for Apache Hadoop 3.x Network-Based Computing Laboratory, The Ohio State University

$ bin/hdfs dfsadmin

Usage: Jjava DFSAdmin

Note: Administrative commands can only be run as the HDFS
superuser.

—report]

-safemode enter | leave | get | wait]

—allowSnapshot <snapshotDir>]

—disallowSnapshot <snapshotDir>]

—saveNamespace]

—rollEdits]

—-restoreFailedStorage true|false|check]

—refreshNodes]

—finalizeUpgrade]

—-rollingUpgrade [<query |prepare|finalize>]]

-metasave filename]

—-refreshServiceAcl]

—refreshUserToGroupsMappings]

—-refreshSuperUserGroupsConfiguration]

—refreshCallQueue]

—printTopology]

—refreshNamenodes datanodehost:port]

—deleteBlockPool datanode-host:port blockpoolId [force]]

setQuota <quota> <dirname>...<dirname>]

clrQuota <dirname>...<dirname>]

clrSpaceQuota <dirname>...<dirname>]
setBalancerBandwidth <bandwidth in bytes per second>]
fetchImage <local directory>]

—-shutdownDatanode <datanode_host:ipc_port> [upgrade]]

—getDatanodeInfo <datanode_host:ipc_port>]

—help [cmd]]

—-setSpaceQuota <quota> <dirname>...<dirname>]

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

Generic options supported are

—conf <configuration file> specify an application configuration
file

-D <property=value> use value for given property

—fs <local |namenode:port> specify a namenode

—jt <local | jobtracker:port> specify a job tracker

—files <comma separated list of files> specify comma separated
files to be copied to the map reduce cluster

—libjars <comma separated list of jars> specify comma separated jar
files to include in the classpath.

—archives <comma separated list of archives> specify comma
separated archives to be unarchived on the compute machines.

For example, we often use the following command to show the status of HDFS:

12

RDMA for Apache Hadoop 3.x

Network-Based Computing Laboratory, The Ohio State University

$ bin/hdfs dfsadmin -report

2. Use the following command to manage files in HDFS:

S bin/hdfs dfs
hadoop fs [generic options]

Usage:

[-
[-
[-
[-
[-
[-
[-
[-
[-
[-
[-
[-
[-
[-
[-
[-
[-
[-
[-
[-
[-
[
[-
[
[
[-
[-
[-
[-

[-
[-
[-
[-
[-
[-
[-

pendToFlle <localsrc> ... <dst>]
[-ignoreCrc] <src> ...]
checksum <src> ...]
chgrp [-R] GROUP PATH...]

chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...]

chown [—-R] [OWNER] [:[GROUP]] PATH...]

copyFromLocal [-f] [-p] <localsrc> ... <dst>]

copyToLocal [-p] [—-ignoreCrc] [-crc] <src>
<localdst>]

count [-qg] <path> ...]

cp [-f] [-p] <src> ... <dst>]

createSnapshot <snapshotDir> [<snapshotName>]]
deleteSnapshot <snapshotDir> <snapshotName>]

df [-h] [<path> ...]1]

—du [-s] [-h] <path> ...]

expunge]

ge [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
getfacl [-R] <path>]

getmerge [-nl] <src> <localdst>]
help [cmd ...]]
[-d] [-h] [-R] [<path> ...1]
mkdlr [-p] <path> ...]
—-moveFromLocal <localsrc> ... <dst>]
-moveToLocal <src> <localdst>]
-mv <src> ... <dst>]
—pu [-f] [-p] <localsrc> ... <dst>]
renameSnapshot <snapshotDir> <oldName> <newName>]
rm [-f] [-r|-R] [-skipTrash] <src> ...]
rmdir [-—-ignore-fail-on-non-empty] <dir> ...]
setfacl [-R] [{-b|l-k} {—m|-x <acl_spec>} <path>]|[-—-set

<acl_spec> <path>]]
setrep [-R] [-w] <rep> <path> ...]
stat [format] <path> ...]
tail [-f] <file>]
test —[defsz] <path>]
text [-ignoreCrc] <src> ...]
—touchz <path> ...]
usage [cmd ...]]

Generic options supported are

13

RDMA for Apache Hadoop 3.x

Network-Based Computing Laboratory, The Ohio State University

—conf <configuration file> specify an application configuration
file

-D <property=value> use value for given property

—fs <local |namenode:port> specify a namenode
—jt <local | jobtracker:port> specify a job tracker

—files <comma separated list of files> specify comma separated

files to be copied to the map reduce cluster
—libjars <comma separated list of jars> specify comma separated jar
files to include in the classpath.
—archives <comma separated list of archives> specify comma

separated archives to be unarchived on the compute machines.

For example, we can use the following command to list directory contents of HDFS:

$ bin/hdfs dfs -1s /

3. Use the following command to interoperate with the MapReduce framework:

S bin/mapred job

Usage:

Usage:

[
[
[
[
(

[
[
[
[
[
[

[
[

JobClient <command> <args>

—submit <job-file>]

—-status <job-id>]

—counter <job-id> <group-name> <counter-—-name>]

-kill <job-id>]

—-set-priority <job-id> <priority>]. Valid values for
priorities are: VERY_HIGH HIGH NORMAL LOW VERY_LOW

—events <job-id> <from-event—-#> <#-of-events>]

—history <jobOutputDir>]

—list [all]]

—list-active-trackers]

—list-blacklisted-trackers]

—list—-attempt—-ids <job-id> <task-type> <task-state>]

—kill-task <task-id>]

—fail-task <task-id>]

CLI <command> <args>

—submit <job-file>]

—status <job-id>]

—counter <job-id> <group-name> <counter-name>]

—kill <job-id>]

—set-priority <job-id> <priority>]. Valid values for
priorities are: VERY_HIGH HIGH NORMAL LOW VERY_LOW

—events <job-id> <from-event-#> <#f-of-events>]

—history <jobHistoryFile>]

—list [all]]

—list-active—-trackers]

14

RDMA for Apache Hadoop 3.x Network-Based Computing Laboratory, The Ohio State University

4.3

4.3.1

[-list-blacklisted-trackers]

[-list-attempt—-ids <job-id> <task-type> <task-state>]. Valid
values for <task-type> are REDUCE MAP. Valid wvalues for
<task-state> are running, completed

[-kill-task <task-attempt-id>]

[-fail-task <task-attempt-id>]

[-logs <job—-id> <task-attempt-id>]

Generic options supported are

—conf <configuration file> specify an application configuration
file

-D <property=value> use value for given property

—fs <local |namenode:port> specify a namenode

—jt <local | jobtracker:port> specify a job tracker

—files <comma separated list of files> specify comma separated
files to be copied to the map reduce cluster

—libjars <comma separated list of jars> specify comma separated jar
files to include in the classpath.

—archives <comma separated list of archives> specify comma
separated archives to be unarchived on the compute machines.

For example, we can use the following command to list all active trackers of MapReduce:

$ bin/mapred job -list-active-trackers

Shutdown

MapReduce over HDFS

. Stop HDFS with the following command:

$ sbin/stop-dfs.sh

Stop YARN with the following command:
$ sbin/stop-yarn.sh

S Running RDMA for Apache Hadoop with SLURM/PBS

To run RDMA for Apache Hadoop with SLURM/PBS, scripts in HADOOP_HOME /bin/slurm _pbs/ di-
rectory can be used. These scripts can be used in interactive mode or batch mode. In the interactive mode, the
user must allocate interactive nodes, and explicitly use the startup, run benchmark, and shutdown commands
described Sections 5.2 or ??, in their interactive session. In the batch mode, the users must create and lauch a
SLURMY/PBS batch script with the startup, run benchmark, and shutdown commands described Sections 5.2

or 2?.

15

RDMA for Apache Hadoop 3.x Network-Based Computing Laboratory, The Ohio State University

Detailed steps for using these scripts are described in Sections 5.1, 5.2 and ??.

5.1 Usage

This section gives an overview of the SLURM/PBS scripts and their usage for startup and shutdown for
running a Hadoop cluster.

5.1.1 Configure and Start a Hadoop Job

For installing, configuring, and starting RDMA for Apache Hadoop with any particular mode of operation,
hibd_install _configure_start.sh can be used. This script can configure and start Hadoop de-
pending on the parameters provided by the user. Detailed parameter options available with this script are
mentioned below:

$./hibd_install_configure_start.sh ?
Usage: hibd_install_configure_start.sh [options]
-h <dir>
specify location of hadoop installation a.k.a. hadoop home

-m <hhh | hhh-m>
specify the mode of operation (default: hhh). For more
information, visit http://hibd.cse.ohio-state.edu/overview/

-c <dir>
specify the hadoop conf dir (default: ""). If user provides
this directory, then the conf files are chosen from this
directory. Otherwise, the conf files are generated automatically
with/without user provided configuration with flag ’-u’

-J <dir>
specify jdk installation or JAVA_HOME (default: ""). If user
does not provide this, then java installation is searched in
the environment.

-u <file>
specify a file containing all the configurations for hadoop
installation (default: n/a). Each line of this file must be

formatted as below:
"<C|H|M|Y>\t<parameter_name>\t<parameter_value>"

C = core-site.xml, H = hdfs-site.xml, M = mapred-site.xml,
Y = yarn-site.xml
—r <dir>

specify the ram disk path to use for hhh and hhh-m modes
(default: /dev/shm)

16

RDMA for Apache Hadoop 3.x Network-Based Computing Laboratory, The Ohio State University

specify to start hadoop after installation and configuration

show this help message

5.1.2 Shutdown Hadoop Cluster

After running a benchmark with the script indicated in Section 5.1.1, stopping the Hadoop cluster with
cleanup of all the directories can be achieved by using the script hibd_stop_cleanup. sh. Similar to the
startup script, this cleanup script can makes different parameters available to the user. Detailed parameter
options available with this script are mentioned below:

$./hibd_stop_cleanup.sh ?
Usage: hibd_stop_cleanup.sh [options]
-h <dir>
specify location of hadoop installation a.k.a. hadoop home

-m <hhh | hhh-m>
specify the mode of operation (default: hhh).
For more information, wvisit

http://hibd.cse.ohio-state.edu/overview/

-c <dir>
specify the hadoop conf dir (default: "").

—r <dir>

specify the ram disk path to use for hhh and hhh-m modes
(default: /dev/shm)

specify to delete logs and data after hadoop stops

show this help message

Details of the usage of the above-mentioned scripts can also be found in slurm-script.sh

5.2 Running MapReduce over HDFS with SLURM/PBS

The user can run MapReduce over HDFS in one of the three modes: HHH or HHH-M. Based on the param-
eters supplied to the hibd_install_configure_start.sh script, Hadoop cluster will start with the
requested mode of operation configuration setting.

17

RDMA for Apache Hadoop 3.x Network-Based Computing Laboratory, The Ohio State University

5.2.1 Startup

To start Hadoop in HHH mode, the following command can be used:

$ hibd_install_configure_start.sh —-s -m hhh-default -r /dev/shm -h
SHADOOP__HOME —j SJAVA_HOME

To start Hadoop in HHH-M mode, the following command can be used:

$ hibd_install_configure_start.sh -s -m hhh-m -r /dev/shm -h
SHADOOP_HOME -7 S$SJAVA_HOME

5.2.2 Running Benchmarks

User can launch a benchmark after successful start of the Hadoop cluster. While running a benchmark, user
should provide the Hadoop config directory using ——conf ig flag with hadoop script. If user does not have
any pre-configured files, the default config directory will be created in the present working directory named
as conf concatenated with job id.

$ SHADOOP_HOME/bin/hadoop —--config ./conf_<job_id> jar
SHADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce—-examples—x. jar
randomwriter -Dmapreduce.randomwriter.mapsperhost=4
—Dmapreduce.randomwriter.bytespermap=67108864 rand_ in

$ SHADOOP_HOME/bin/hadoop —--config ./conf_<job_id> jar
SHADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce—examples—+.jar
sort rand_in rand_out

5.2.3 Shutdown

In order to stop Hadoop and cleanup the corresponding logs, the following command can be used:

$ hibd_stop_cleanup.sh -d -r /dev/shm -h $SHADOOP_HOME

5.2.4 Running Benchmarks

Running benchmark for MapReduce over Lustre with local disks follows the same guidelines as shown
above. For benchmarks running on MapReduce over Lustre without local disks, the following command
should be used.

$ /tmp/hadoop_install_<job_id>/bin/hadoop jar
/tmp/hadoop_install_<job_id>/share/hadoop/mapreduce/
hadoop—-mapreduce-examples—*.jar randomwriter
—-Dmapreduce.randomwriter.mapsperhost=4
—Dmapreduce.randomwriter.bytespermap=67108864
file://<lustre_path>/hibd_data_<job_id>/rand_in

18

RDMA for Apache Hadoop 3.x Network-Based Computing Laboratory, The Ohio State University

$ /tmp/hadoop_install_<job_id>/bin/hadoop jar
/tmp/hadoop_install_<job_id>/share/hadoop/mapreduce/
hadoop-mapreduce-examples—x.jar sort
file://<lustre_path>/hibd_data_<job_id>/rand_in
file://<lustre_path>/hibd_data_<job_id>/rand_out

5.2.5 Shutdown

For stopping Hadoop and clean the used directories, the same command as shown above can be used.

6 Benchmarks

6.1 TestDFSIO

The TestDFSIO benchmark is used to measure 1/0O performance of the underlying file system. It does this by
using a MapReduce job to read or write files in parallel. Each file is read or written in a separate map task
and the benchmark reports the average read/write throughput per map.

On a client node, the TestDFSIO write experiment can be run using the following command:

$ bin/hadoop Jjar
share/hadoop/mapreduce/hadoop—mapreduce-client—jobclient—*x—tests. jar
TestDFSIO -write —-nrFiles <nfiles> —-fileSize <fsize>

This command writes ‘nfiles’ files and ‘fsize’ MB each.

To run the same job with MapReduce over Lustre, one additional config parameter must be added in
mapred-site.xml.

<property>
<name>test.build.data</name>
<value><lustre-path-data-dir>/benchmarks/TestDFSIO</value>
</property>

After adding this config parameter, the same command as mentioned above can be used to launch TestDF-
SIO experiment on top of Lustre.

6.2 Sort

The Sort benchmark uses the MapReduce framework to sort the input directory into the output directory. The
inputs and outputs are sequence files where the keys and values are BytesWritable. Before running the
Sort benchmark, we can use RandomWriter to generate the input data. RandomWriter writes random data
to HDFS using the MapReduce framework. Each map takes a single file name as input and writes random
BytesWritable keys and values to the HDFS sequence file.

19

RDMA for Apache Hadoop 3.x Network-Based Computing Laboratory, The Ohio State University

On a client node, the RandomWriter experiment can be run using the following command:

$ bin/hadoop Jjar share/hadoop/mapreduce/hadoop-mapreduce—-examples—x*.jar
randomwriter -Dmapreduce.randomwriter.bytespermap=<nbytes>
—Dmapreduce.randomwriter.mapsperhost=<nmaps> <out-dir>

This command launches ‘nmaps’ maps per node, and each map writes ‘nbytes’ data to ‘out-dir’.

On a client node, the Sort experiment can be run using the following command:
$ bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce—examples—x*.jar

sort —-r <nreds> <in-dir> <out—-dir>

This command launches ‘nreds’ reduces to sort data from ‘in-dir’ to ‘out-dir’.
The input directory of Sort can be the output directory of RandomWriter.

To run the same job with MapReduce over Lustre, the following commands can be used.

$ bin/hadoop Jjar share/hadoop/mapreduce/hadoop-mapreduce—examples—x*.Jjar
randomwriter —-Dmapreduce.randomwriter.bytespermap=<nbytes>
—Dmapreduce.randomwriter.mapsperhost=<nmaps>
file:///<lustre-path-data-dir>/<out-dir>

$ bin/hadoop Jjar share/hadoop/mapreduce/hadoop-mapreduce-examples—x*.Jjar
sort —-r <nreds> file:///<lustre-path-data-dir>/<in-dir>
file:///<lustre-path-data-dir>/<out-dir>

6.3 TeraSort

TeraSort is probably the most well-known Hadoop benchmark. It is a benchmark that combines testing the
HDFS and MapReduce layers of a Hadoop cluster. The input data for TeraSort can be generated by the
TeraGen tool, which writes the desired number of rows of data in the input directory. By default, the key and
value size is fixed for this benchmark at 100 bytes. TeraSort takes the data from the input directory and sorts
it to another directory. The output of TeraSort can be validated by the TeraValidate tool.

Before running the TeraSort benchmark, we can use TeraGen to generate the input data as follows:

$ bin/hadoop Jjar share/hadoop/mapreduce/hadoop-mapreduce—examples—x*.Jjar
teragen <nrows> <out-dir>

This command writes ‘nrows’ of 100-byte rows to ‘out-dir’.

On a client node, the TeraSort experiment can be run using the following command:

$ bin/hadoop Jjar share/hadoop/mapreduce/hadoop-mapreduce—examples—x*.Jjar
terasort <in-dir> <out-dir>

This command sorts data from ‘in-dir’ to ‘out-dir’.
The input directory of TeraSort can be the output directory of TeraGen.

To run the same job with MapReduce over Lustre, the following commands can be used.

20

RDMA for Apache Hadoop 3.x Network-Based Computing Laboratory, The Ohio State University

S bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples—x*.jar
teragen <nrows> file:///<lustre-path-data-dir>/<out-dir>

$ bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce—examples—x*.jar
terasort file:///<lustre-path-data-dir>/<in-dir>
file:///<lustre-path-data-dir>/<out-dir>

6.4 OHB Micro-benchmarks

The OHB Micro-benchmarks support standalone evaluations of Hadoop Distributed File System (HDFS),
Hadoop Database, HBase, Spark, and Memcached (See here). These benchmarks help fine-tune each com-
ponent avoiding the impact of others.

OSU HiBD-Benchmarks (OHB) have HDFS benchmarks for Sequential Write Latency (SWL), Sequen-
tial Read Latency (SRL), Random Read Latency (RRL), Sequential Write Throughput (SWT), Sequential
Read Throughput (SRT).

The source code can be downloaded from http://hibd.cse.ohio-state.edu/download/
hibd/osu-hibd-benchmarks—-0.9.2.tar.gz. The source can be compiled with the help of the
Maven. More details on building and running the OHB Micro-benchmark are provided in the README.

A brief description of the benchmark is provided below:

Sequential Write Latency (SWL): This benchmark measures the latency of sequential write to HDFS. The
benchmark takes five parameters: file name (-f£ileName), file size (~fileSize), block size (-bSize),
replication factor (-rep), and buffer size (-bufSize). The mandatory parameters are file name and size
(in MB). The output of the benchmark is the time taken to write the file to HDFS. The buffer size indicates the
size of the write buffer. HDFS block size and replication factor can also be tuned through this benchmarks.
The benchmark also prints the important configuration parameters of HDFS.

Sequential Read Latency (SRL): This benchmark measures the latency of sequential read from HDFS. The
benchmark takes two parameters: file name and buffer size. The mandatory parameter is file name. The
output of the benchmark is the time taken to read the file from HDFS. The buffer size indicates the size of
the read buffer. The benchmark also prints the important configuration parameters of HDFS.

Random Read Latency (RRL): This benchmark measures the latency of random read from HDFS. The
benchmark takes four parameters: file name (-fileName), file size (-fileSize), skip size (-skipSize)
and buffer size (-bufSize). The mandatory parameters are file name and file size. The benchmark first
creates a file 2x the file (read) size and then randomly reads from it with a default skip size of 10. The output
of the benchmark is the time taken to read the file from HDFS. The buffer size indicates the size of the read
buffer. The benchmark also prints the important configuration parameters of HDFS.

Sequential Write Throughput (SWT): This benchmark measures the throughput of sequential write to
HDFS. The benchmark takes five parameters: file size (~fileSize), block size (-bSize), replication
factor (—rep), buffer size (-bufSize), and an output directory (—outDir) for the output files. The
mandatory parameters are file size (in MB) and the output directory. Linux xargs command is used to launch
multiple concurrent writers. File size indicates the write size per writer. A hostfile contains the hostnames
where the write processes are launched. The benchmark outputs the total write throughput in MBps. The
buffer size indicates the size of the write buffer. HDFS block size and replication factor can also be tuned

21

http://hibd.cse.ohio-state.edu/downloads/#benchmarks
http://hibd.cse.ohio-state.edu/download/hibd/osu-hibd-benchmarks-0.9.2.tar.gz
http://hibd.cse.ohio-state.edu/download/hibd/osu-hibd-benchmarks-0.9.2.tar.gz

RDMA for Apache Hadoop 3.x Network-Based Computing Laboratory, The Ohio State University

through this benchmarks.

Sequential Read Throughput (SRT): This benchmark measures the throughput of sequential read from
HDFS. The benchmark takes three parameters: file size (-£fileSize), buffer size (-bufSize), and an
output directory (—outDir) for the output files. The mandatory parameters are file size (in MB) and the
output directory. Linux xargs command is used to launch multiple concurrent readers. File size indicates
the write size per reader. A hostfile contains the hostnames where the write processes are lauched. The
benchmark outputs the total read throughput in MBps. The buffer size indicates the size of the read buffer.

22

	Overview of the RDMA for Apache Hadoop 3.x Project
	Features
	Setup Instructions
	Prerequisites
	Download
	Installation steps
	Basic Configuration
	HDFS with Heterogeneous Storage (HHH)
	HDFS in Memory (HHH-M)

	Advanced Configuration
	RDMA Device Selection
	RDMA Port
	Max EndPoint Number
	Packet Size for RDMA Write
	Placement Policy Selection
	Automatic Placement Policy Selection
	Threshold of RAM Disk Usage
	No. of In-Memory Replicas

	Basic Usage Instructions
	Startup
	MapReduce over HDFS

	Basic Commands
	Shutdown
	MapReduce over HDFS

	Running RDMA for Apache Hadoop with SLURM/PBS
	Usage
	Configure and Start a Hadoop Job
	Shutdown Hadoop Cluster

	Running MapReduce over HDFS with SLURM/PBS
	Startup
	Running Benchmarks
	Shutdown
	Running Benchmarks
	Shutdown

	Benchmarks
	TestDFSIO
	Sort
	TeraSort
	OHB Micro-benchmarks

