RDMA for Apache Hadoop 2.x 1.3.5 User Guide

HIGH-PERFORMANCE BI1G DATA TEAM
http://hibd.cse.ohio-state.edu

NETWORK-BASED COMPUTING LABORATORY
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
THE OHIO STATE UNIVERSITY

Copyright (c) 2011-2018
Network-Based Computing Laboratory,
headed by Dr. D. K. Panda.

All rights reserved.

Last revised: April 11, 2018

http://hibd.cse.ohio-state.edu

Contents
1 Overview of the RDMA for Apache Hadoop 2.x Project
2 Features

3 Setup Instructions

3.1 Prerequisites e e
3.2 Download e
32,1 x86Package
322 POWERPackage e
323 PluginPackage L
3.3 Installation Steps e e e e
3.3.1 Installing intergrated RDMA for Apache Hadoop package
3.3.2 Installing RDMA-based plugin for Apache Hadoop, HDP,orCDH
3.3.3 Installing RDMA for Apache Hadoop with Singularity
3.3.4 Installing RDMA for Apache Hadoop with Docker
3.4 BasicConfiguration e e e e e
3.4.1 HDFS with Heterogeneous Storage (HHH)
342 HDFSinMemory HHH-M)
3.4.3 HDFS with Heterogeneous Storage and Lustre (HHH-L)
3.4.4 Hadoop with Memcached-based Burst Buffer and Lustre (HHH-L-BB)
3.4.5 MapReduce over Lustre with Local Disks
3.4.6 MapReduce over Lustre without Local Disks
3.5 Advanced Configuration L e
3.5.1 RDMA Device Selection e
3.5.2 Parallel Replication L
3.5.3 Placement Policy Selection
3.5.4 Automatic Placement Policy Selection
3.5.5 Threshold of RAM Disk Usage
3.5.6 No. of In-Memory Replicas
3.5.7 Disk-assisted Shuffle Lo
3.5.8 SSD Optimization for Intermediate Data
3.5.9 In-memory Spill of Intermediate Map Output
3.5.10 Heap Memory Threshold for Reduce Tasks.
3.5.11 Locality-aware Shuffle L
3.5.12 No. of DataNode Block Handlers
3.5.13 Singularity Support e e
3.5.14 Docker Support e e e e
4 Basic Usage Instructions
4.1 Startup e e e
4.1.1 MapReduceover HDFS
4.1.2 MapReduceoverLustre
4.2 BasicCommands e
43 Shutdown L e e

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

43.1 MapReduceover HDFS o 30

432 MapReduceover Lustre 31

44 UsagewithDocker e 31
4.5 Usage with Singularity e 31
5 Running RDMA for Apache Hadoop with SLURM/PBS 31
5.1 Usage 32
5.1.1 Configure and Starta HadoopJob 32

5.1.2 Shutdown Hadoop Cluster 33

5.2 Running MapReduce over HDFS with SLURM/PBS 34
521 Startup ... oL e e 34

5.22 Running Benchmarks L 34

523 Shutdown 35

5.3 Running MapReduce over Lustre with SLURM/PBS 35
531 Startup e e e e e 35

5.3.2 Running Benchmarks o o 35

533 Shutdown 35

6 Benchmarks 36
6.1 TestDFSIO e 36
6.2 Sort ... e 36
6.3 TeraSort L e 37
6.4 OHB Micro-benchmarks 38

ii

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

1 Overview of the RDMA for Apache Hadoop 2.x Project

RDMA for Apache Hadoop 2.x is a high-performance design of Hadoop over RDMA-enabled Interconnects.
This version of RDMA for Apache Hadoop 2.x 1.3.5 is based on Apache Hadoop 2.8.0 and is compliant
with Apache Hadoop 2.8.0, Hortonworks Data Platform (HDP) 2.5.0.3, and Cloudera Distribution Including
Apache Hadoop (CDH) 5.8.2 APIs and applications. This file is intended to guide users through the various
steps involved in installing, configuring, and running RDMA for Apache Hadoop 2.x over InfiniBand.

Figure 1 presents a high-level architecture of RDMA for Apache Hadoop 2.x. In this package, many
different modes have been included that can be enabled/disabled to obtain performance benefits for different
kinds of applications in different Hadoop environments. This package can be configured to run MapReduce
jobs on top of HDFS as well as Lustre.

Following are the different modes

that are included in our package. Job RDMA-enhanced MapReduce
. Schedulers Intermediate Data Dir
HHH: Heterogeneous storage devices (Localdisks (550, 1DD))
with hybrid replication schemes are sup- SR RDMA-
ported in this mode of operation to have RDMA-enhanced HDFS ""‘l'?‘;ged

Burst Buffer
better fault.-toleran(.:e as well as perfor- in-memory) (HEIEIREREOE (Memeached)
mance. This mode is enabled by default PBS (HHH-M) | R With Lustre

. (HHH-L-BB)
in the package.

HHH-M: A high-performance in-memory Fjgure 1: RDMA-based Hadoop architecture and its different
based setup has been introduced in this odes

package that can be utilized to perform
all I/O operations in-memory and obtain
as much performance benefit as possible.

HHH-L: With parallel file systems integrated, HHH-L mode can take advantage of the Lustre available in
the cluster.

HHH-L-BB: HHH-L mode takes advantage of the Lustre available in the cluster; HHH-L-BB mode deploys
a Memcached-based burst buffer system to reduce the bandwidth bottleneck of shared file system access.
The burst buffer design is hosted by Memcached servers, each of which has a local SSD.

MapReduce over Lustre, with/without local disks: Besides, HDFS based solutions, this package also
provides support to run MapReduce jobs on top of Lustre alone. Here, two different modes are introduced:
with local disks and without local disks.

Running with Slurm and PBS: Supports deploying RDMA for Apache Hadoop 2.x with Slurm and PBS
in different running modes (HHH, HHH-M, HHH-L, and MapReduce over Lustre).

If there are any questions, comments or feedback regarding this software package, please post them to
rdma-hadoop-discuss mailing list (rdma-hadoop-discuss @cse.ohio-state.edu).

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

2 Features

High-level features of RDMA for Apache Hadoop 2.x 1.3.5 are listed below. New features and enhancements
compared to 1.3.0 release are marked as (NEW).

e Based on Apache Hadoop 2.8.0

e Compliant with Apache Hadoop 2.8.0 APIs and applications

e (NEW) Support for Containers (Docker and Singularity)

e Initial support for POWER architecture

e Performance optimization and tuning on OpenPOWER cluster

e Support for RDMA Device Selection

e High performance design with native InfiniBand and RoCE support at the verbs level for HDFS,
MapReduce, and RPC components

e Compliant with Apache Hadoop 2.8.0, Hortonworks Data Platform (HDP) 2.5.0.3, and Cloudera Dis-
tribution Including Apache Hadoop (CDH) 5.8.2 APIs and applications

e Plugin-based architecture supporting RDMA-based designs for HDFS (HHH, HHH-M, HHH-L, HHH-
L-BB), MapReduce, MapReduce over Lustre, and RPC, etc.

— Plugin for Apache Hadoop distribution (tested with 2.8.0)
— Plugin for Hortonworks Data Platform (HDP) (tested with 2.5.0.3)
— Plugin for Cloudera Distribution Including Apache Hadoop (CDH) (tested with 5.8.2)

e Supports deploying Hadoop with Slurm and PBS in different running modes (HHH, HHH-M, HHH-L,
and MapReduce over Lustre)

e Easily configurable for different running modes (HHH, HHH-M, HHH-L, HHH-L-BB, and MapRe-
duce over Lustre) and different protocols (native InfiniBand, RoCE, and IPoIB)

e On-demand connection setup

e HDFS over native InfiniBand and RoCE

RDMA-based write
RDMA-based replication

Parallel replication support

Overlapping in different stages of write and replication

Enhanced hybrid HDFS design with in-memory and heterogeneous storage (HHH)

* Supports four modes of operations
- HHH (default) with I/O operations over RAM disk, SSD, and HDD
- HHH-M (in-memory) with I/O operations in-memory

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

- HHH-L (Lustre-integrated) with I/O operations in local storage and Lustre
- HHH-L-BB (Burst Buffer) with I/O operations in Memcached-based burst buffer (RDMA-

based Memcached) over Lustre

*

Lustre)
- Greedy and Balanced policies support
- Automatic policy selection based on available storage types

*

*

Lustre-based fault-tolerance for HHH-L mode
- No HDFS replication
- Reduced local storage space usage

*

e MapReduce over native InfiniBand and RoCE

RDMA-based shuffle

Prefetching and caching of map output

In-memory merge

Advanced optimization in overlapping

* map, shuffle, and merge
* shuffle, merge, and reduce

Optional disk-assisted shuffle

Automatic Locality-aware Shuffle

Optimization of in-memory spill for Maps

High performance design of MapReduce over Lustre

* Supports two shuffle approaches
- Lustre read based shuffle
- RDMA based shuffle
+ Hybrid shuffle based on both shuffle approaches
- Configurable distribution support
+ In-memory merge and overlapping of different phases

— Support for priority-based local directory selection in MapReduce Shuffle
e RPC over native InfiniBand and RoCE

— JVM-bypassed buffer management
— RDMA or send/recv based adaptive communication

— Intelligent buffer allocation and adjustment for serialization
o Tested with

— Mellanox InfiniBand adapters (DDR, QDR, FDR, and EDR)

Policies to efficiently utilize heterogeneous storage devices (RAM Disk, SSD, HDD, and

Hybrid replication (in-memory and persistent storage) for HHH default mode
Memory replication (in-memory only with lazy persistence) for HHH-M mode

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

RoCE support with Mellanox adapters

Various multi-core platforms (e.g., x86, POWER)
RAM Disks, SSDs, HDDs, and Lustre

OpenJDK and IBM JDK

(NEW) Docker 18.03.0-ce

— (NEW) Singularity 2.4.6

3 Setup Instructions

3.1 Prerequisites
Prior to the installation of RDMA for Apache Hadoop 2.x, please ensure that you have the latest version

of JDK installed on your system, and set the JAVA_HOME and PATH environment variables to point to the
appropriate JDK installation. We recommend the use of JDK version 1.7 and later.

In order to use the RDMA-based features provided with RDMA for Apache Hadoop 2.x, install the latest
version of the OFED distribution that can be obtained from http://www.openfabrics.org.

3.2 Download

Two kinds of tarballs are provided for downloading, intergrated package and plugin package.

3.2.1 x86 Package
Download the most recent distribution tarball of intergrated RDMA for Apache Hadoop package for x86

clusters fromhttp://hibd.cse.ohio-state.edu/download/hibd/rdma-hadoop-2.x-1.
3.5-x86-bin.tar.gz.

3.2.2 POWER Package
Download the most recent distribution tarball of intergrated RDMA for Apache Hadoop package for POWER

clusters fromhttp://hibd.cse.ohio-state.edu/download/hibd/rdma-hadoop—-2.x-1.
3.5-POWER-bin.tar.gz.

3.2.3 Plugin Package

Download the most recent distribution tarball of RDMA for Apache Hadoop plugin package from http: //
hibd.cse.ohio-state.edu/download/hibd/rdma-hadoop-2.x-1.1.0-plugin.tar.gz.

http://www.openfabrics.org
http://hibd.cse.ohio-state.edu/download/hibd/rdma-hadoop-2.x-1.3.5-x86-bin.tar.gz
http://hibd.cse.ohio-state.edu/download/hibd/rdma-hadoop-2.x-1.3.5-x86-bin.tar.gz
http://hibd.cse.ohio-state.edu/download/hibd/rdma-hadoop-2.x-1.3.5-POWER-bin.tar.gz
http://hibd.cse.ohio-state.edu/download/hibd/rdma-hadoop-2.x-1.3.5-POWER-bin.tar.gz
http://hibd.cse.ohio-state.edu/download/hibd/rdma-hadoop-2.x-1.1.0-plugin.tar.gz
http://hibd.cse.ohio-state.edu/download/hibd/rdma-hadoop-2.x-1.1.0-plugin.tar.gz

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

3.3 Installation steps

The RDMA for Apache Hadoop can be installed using the intergrated distribution or as plugins on existing
Apache Hadoop source in use.

3.3.1 Installing intergrated RDMA for Apache Hadoop package

Following steps can be used to install the integrated RDMA for Apache Hadoop package.

1. Unzip the intergrated RDMA for Apache Hadoop distribution tarball using the following command:

tar zxf rdma-hadoop-2.x-1.3.5-x86-bin.tar.gz

2. Change directory to rdma-hadoop-2.x-1.3.5-x86
cd rdma-hadoop-2.x-1.3.5-x86

3.3.2 Installing RDMA-based plugin for Apache Hadoop, HDP, or CDH

Following steps can be used to build and install the RDMA-based plugin for Apache Hadoop, HDP, or CDH
package.

1. Unzip the plugin tarball of the specific distribution using the following command:

tar zxf rdma-hadoop-2.x-1.1.0-plugin.tar.gz

2. Change directory to hadoop-plugin-2.7.3/rdma-plugins/
cd rdma-hadoop-2.x-1.1.0-plugin

3. Runthe install script install.sh. This script applies the appropriate patch and re-builds the source
from the path specified. This installation can be launched using the following command:

./install.sh HADOOP_SRC_DIR DISTRIBUTION

The installation script takes two arguments:

HADOOP_SRC_DIR
This mandatory argument is the directory location containg Hadoop source.

DISTRIBUTION
This mandatory argument specifies the Hadoop source distribution.
This is necessary to choose the appropriate patch to apply.
The current options are apache, hdp, or cdh.

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

3.3.3 Installing RDMA for Apache Hadoop with Singularity

Following steps can be used to install RDMA for Apache Hadoop with Singularity.

1. Download and install Singularity from http://singularity.lbl.gov/install-linux

2. Create a singularity image which has a Linux distribution and OFED installation. Detailed steps are
available from http://singularity.lbl.gov/quickstart

3. Launch a single singularity instance on each node that should run a Hadoop daemon. Currently, Sin-
gularity does not support network isolation making it impossible to distiguish between two Singularity
instances on a single node when communicating over the network. On each node, the instance can be
launched using a command like

singularity instance.start —--writable <singularity image>
‘hostname -s?'

It is important to use the —writable option so that data can be written by applications running in the
instance. The instance name should be the hostname of the node. Also, it is necessary to ensure that all
the disk partitions are mounted inside the image and the RDMA for Apache Hadoop package is also
available inside the instance. The —B option can be used to mount directories inside the singularity
instance.

For detailed information about Singularity, please refer to the Singularity userguide:
http://singularity.lbl.gov/quickstart

3.3.4 Installing RDMA for Apache Hadoop with Docker

Following steps can be used to install RDMA for Apache Hadoop with Docker.

1. Download and install Docker from https://docs.docker.com/install/

2. Create a Docker image which has a Linux distribution, OFED installation, and Java distribution. De-
tailed steps are available from https://docs.docker.com/develop/develop—images/
dockerfile_best-practices/.

3. Docker instances can be launched using a command like

docker run —--name <name> -it —--pid=host —-—-ipc=host —--privileged
<image> /bin/bash

It is important to use the —privileged flag while launching images so that the Docker instance has
access to the RDMA device.

4. Setup ssh networking between the docker instances. For example, the ——1ink option can be used
for this purpose. For more information, refer to the Docker userguide: https://docs.docker.
com/

http://singularity.lbl.gov/install-linux
http://singularity.lbl.gov/quickstart
http://singularity.lbl.gov/quickstart
https://docs.docker.com/install/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/
https://docs.docker.com/

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

3.4 Basic Configuration

The configuration files can be found in the directory rdma-hadoop-2.x-1.3.5-x86/etc/hadoop,
in the intergrated RDMA for Apache Hadoop package. If the plugin-based Hadoop distribution is being
used, the configuration files can be found at HADOOP _SOURCE /hadoop-dist/target/etc/hadoop,
where HADOOP _SOURCE is the Hadoop source directory on which the plugin is being (or has been) applied.

3.4.1 HDFS with Heterogeneous Storage (HHH)

Steps to configure RDMA for Apache Hadoop 2.x include:

1. Configure hadoop—env. sh file.

export JAVA_HOME=/opt/java/1l.7.0

2. Configure core-site.xml file. RDMA for Apache Hadoop 2.x 1.3.5 supports three different
modes: IB, RoCE, and TCP/IP.

Configuration of the IB mode

<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://node001:9000</value>
<description>NameNode URI.</description>
</property>

<property>
<name>hadoop.ib.enabled</name>
<value>true</value>
<description>Enable the RDMA feature over IB. Default value of
hadoop.ib.enabled is true.</description>
</property>

<property>
<name>hadoop.roce.enabled</name>
<value>false</value>
<description>Disable the RDMA feature over RoCE. Default value
of hadoop.roce.enabled is false.</description>
</property>
</configuration>

Configuration of the RoCE mode:

<configuration>
<property>
<name>fs.defaultFS</name>

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

<value>hdfs://node001:9000</value>
<description>NameNode URI.</description>
</property>

<property>
<name>hadoop.ib.enabled</name>
<value>false</value>
<description>Disable the RDMA feature over IB. Default value of
hadoop.ib.enabled is true.</description>
</property>

<property>
<name>hadoop.roce.enabled</name>
<value>true</value>
<description>Enable the RDMA feature over RoCE. Default value
of hadoop.roce.enabled is false.</description>
</property>
</configuration>

Configuration of the TCP/IP mode:

<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://node001:9000</value>
<description>NameNode URI.</description>
</property>

<property>
<name>hadoop.ib.enabled</name>
<value>false</value>
<description>Disable the RDMA feature over IB. Default value of
hadoop.ib.enabled is true.</description>
</property>

<property>
<name>hadoop.roce.enabled</name>
<value>false</value>
<description>Disable the RDMA feature over RoCE. Default value
of hadoop.roce.enabled is false.</description>
</property>
</configuration>

Note that we should not enable “hadoop.ib.enabled” and “hadoop.roce.enabled” at the same time.
Also, for IB and RoCE mode, the speculative executions of map and reduce tasks are disabled by
default. The Physical and Virtual memory monitoring is also disabled for these modes. As default,
org.apache.hadoop.mapred. HOMRShuffleHandler is configured as the Shuffle Handler service and

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

org.apache.hadoop.mapreduce.task.reduce. HOMRShuffle is configured as the default Shuffle plugin.

3. Configure hdfs-site.xml file.

<configuration>
<property>
<name>dfs.namenode.name.dir</name>
<value>file:///home/hadoop/rdma-hadoop-2.x-1.3.5-x86/Name</value>
<description>Path on the local filesystem where the NameNode
stores the namespace and transactions logs
persistently.</description>
</property>

<property>
<name>dfs.datanode.data.dir</name>
<value>[RAM _DISK]file:///data0l, [SSD]file:///datal2,
[DISK]file:///data03</value>
<description>Comma separated list of paths of the local storage
devices with corresponding types on a DataNode where it
should store its blocks.</description>
</property>

<property>
<name>dfs.master</name>
<value>node001</value>
<description>Hostname of dfs master. </description>
</property>
</configuration>

4. Configure yarn—-site.xml file.

<configuration>
<property>
<name>yarn.resourcemanager.address</name>
<value>node001:8032</value>
<description>ResourceManager host:port for clients to submit
jobs.</description>
</property>

<property>
<name>yarn.resourcemanager.scheduler.address</name>
<value>node001:8030</value>
<description>ResourceManager host:port for ApplicationMasters
to talk to Scheduler to obtain resources.</description>
</property>

<property>

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

<name>yarn.resourcemanager.resource-tracker.address</name>
<value>node001:8031</value>
<description>ResourceManager host:port for
NodeManagers.</description>
</property>

<property>
<name>yarn.resourcemanager.admin.address</name>
<value>node001:8033</value>
<description>ResourceManager host:port for administrative
commands.</description>
</property>

<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
<description>Shuffle service that needs to be set for MapReduce
applications.</description>
</property>
</configuration>

5. Configure mapred-site.xml file.

<configuration>
<property>
<name>mapreduce. framework .name</name>
<value>yarn</value>
<description>Execution framework set to Hadoop
YARN.</description>
</property>

<property>
<name>yarn.app.mapreduce.am.command-opts</name>
<value>-Xmx1024m -Dhadoop.conf.dir=${HADOOP_CONF_DIR}</value>
<description>Java opts for the MR App Master processes. The
following symbol, if present, will be interpolated: @taskid@
is replaced by current TaskID. Any other occurrences of '@’
will go unchanged. For example, to enable verbose gc logging
to a file named for the taskid in /tmp and to set the heap
maximum to be a gigabyte, pass a ’"value’ of: —-Xmx1024m
-verbose:gc —-Xloggc:/tmp/Q@taskidl.gc
Usage of -Djava.library.path can cause programs to no longer
function if hadoop native libraries are used. These values
should instead be set as part of LD_LIBRARY_PATH in the map /
reduce JVM env using the mapreduce.map.env and
mapreduce.reduce.env config settings.

10

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

</description>
</property>

<property>
<name>yarn.app.mapreduce.am.env</name>
<value>LD_LIBRARY PATH=S${HADOOP_HOME}/lib/native</value>
<description>User added environment variables for the MR App

Master

processes. Example
1) A=foo This will set the env variable A to foo
2) B=SB:c This is inherit tasktracker’s B env variable.
</description>

</property>

</configuration>

6. Configure slaves file. List all slave hostnames in this file, one per line.

node002
node003

We can also configure more specific items according to actual needs. For example, we can configure
the item dfs.blocksize in hdfs-site.xml to change the HDFS block size. To get more
detailed information, please visit http://hadoop.apache.org

3.4.2 HDFS in Memory (HHH-M)

We can enable MapReduce over in-memory HDFS using the following configuration steps:

1. Configure hdfs-site.xml file.

<configuration>
<property>
<name>dfs.namenode.name.dir</name>
<value>file:///home/hadoop/rdma-hadoop-2.x-1.3.5-x86/Name</value>
<description>Path on the local filesystem where the NameNode
stores the namespace and transactions logs
persistently.</description>
</property>

<property>
<name>dfs.datanode.data.dir</name>
<value>[RAM DISK]file:///data0l, [SSD]file:///datal2,
[DISK]file:///data03</value>
<description>Comma separated list of paths of the local storage
devices with corresponding types on a DataNode where it
should store its blocks.</description>

11

http://hadoop.apache.org

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

</property>

<property>
<name>dfs.rdma.hhh.mode</name>
<value>In-Memory</value>
<description>Select In-Memory mode (HHH-M). </description>
</property>

<property>
<name>dfs.master</name>
<value>node001</value>
<description>Hostname of dfs master. </description>
</property>
</configuration>

2. Configure the yarn—-site.xml file as specified in Section 3.4.1.
3. Configure the mapred-site.xml file as specified in Section 3.4.1.
4. Configure the core-site.xml file as specified in Section 3.4.1.

5. Configure the slaves file as specified in Section 3.4.1.

3.4.3 HDFS with Heterogeneous Storage and Lustre (HHH-L)

We can enable MapReduce over Luster-integrated HDFS using the following configuration steps:

1. Configure hdfs—-site.xml file.

<configuration>
<property>
<name>dfs.namenode.name.dir</name>
<value>file:///home/hadoop/rdma-hadoop—-2.x-1.3.5-x86/Name</value>
<description>Path on the local filesystem where the NameNode
stores the namespace and transactions logs
persistently.</description>
</property>

<property>
<name>dfs.datanode.data.dir</name>
<value>[RAM _DISK]file:///data0l, [SSD]file:///data02,
[DISK]file:///data03</value>
<description>Comma separated list of paths of the local storage
devices with corresponding types on a DataNode where it
should store its blocks.</description>
</property>

12

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

<property>
<name>dfs.rdma.hhh.mode</name>
<value>Lustre</value>
<description>Select Lustre-Integrated mode (HHH-L).
</description>
</property>

<property>
<name>dfs.replication</name>
<value>1</value>
<description>Lustre provides fault-tolerance; use replication
factor of 1</description>
</property>

<property>
<name>dfs.rdma.lustre.path</name>
<value>/scratch/hadoop-lustre/</value>
<description>The path of a directory in Lustre where HDFS will
store the blocks</description>
</property>

<property>
<name>dfs.master</name>
<value>node001l</value>
<description>Hostname of dfs master. </description>

</property>
</configuration>

2. Configure the yarn—-site.xml file as specified in Section 3.4.1.
3. Configure the mapred-site.xml file as specified in Section 3.4.1.
4. Configure the core-site.xml file as specified in Section 3.4.1.

5. Configure the s1aves file as specified in Section 3.4.1.

3.44 Hadoop with Memcached-based Burst Buffer and Lustre (HHH-L-BB)

We can enable MapReduce over Luster-integrated HDFS and Memcached-based burst buffer using the fol-
lowing configuration steps:

1. Configure hdfs-site.xml file.

<configuration>

13

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

<property>
<name>dfs.namenode.name.dir</name>
<value>file:///home/hadoop/rdma-hadoop-2.x-1.3.5-x86/Name</value>
<description>Path on the local filesystem where the NameNode
stores the namespace and transactions logs
persistently.</description>
</property>

<property>
<name>dfs.datanode.data.dir</name>
<value>[RAM DISK]file:///data0l, [SSD]file:///data02,
[DISK]file:///data03</value>
<description>Comma separated list of paths of the local storage
devices with corresponding types on a DataNode where it
should store its blocks.</description>
</property>

<property>
<name>hadoop.bb.enabled</name>
<value>true</value>
<description>Select Lustre-Integrated mode (HHH-L).
</description>
</property>

<property>
<name>dfs.replication</name>
<value>1</value>
<description>Lustre provides fault-tolerance; use replication
factor of 1</description>
</property>

<property>
<name>dfs.rdma.lustre.path</name>
<value>/scratch/hadoop-lustre/</value>
<description>The path of a directory in Lustre where HDFS will
store the blocks</description>
</property>

<property>
<name>memcached.server.list</name>
<value>memserverl, memserver?2, memserver3, memserverd</value>
<description>Comma separated list of Memcached servers that act
as the burst buffer for Hadoop. </description>
</property>

<property>

14

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

<name>dfs.master</name>
<value>node001</value>
<description>Hostname of dfs master. </description>
</property>
</configuration>

2. Configure the yarn—-site.xml file as specified in Section 3.4.1.
3. Configure the mapred-site.xml file as specified in Section 3.4.1.
4. Configure the core-site.xml file as specified in Section 3.4.1.

5. Configure the s1aves file as specified in Section 3.4.1.

3.4.5 MapReduce over Lustre with Local Disks

In this mode, Hadoop MapReduce can be launched on top of Lustre file system without using HDFS-level
APIs. We can enable MapReduce over Lustre with two different kinds of Hadoop configuration settings. In
the first setting, we use the local disks of each node to hold the intermediate data generated in the runtime of
job execution. To enable MapReduce over Lustre with this setting, we use the following configuration steps:

1. Create the data directory in the Lustre File System.

mkdir <lustre-path-data-dir>

2. Configure Lustre file striping. It is recommended to use a stripe size equal to the file system block size
(“fs.local.block.size”) in “core-site.xml”. For our package, we recommend to use a stripe size value
of 256 MB.

1fs setstripe —-s 256M <lustre-path-data-dir>

3. Configure mapred—-site.xml file.

<configuration>

<property>
<name>mapreduce. framework.name</name>
<value>yarn</value>
<description>Execution framework set to Hadoop
YARN.</description>
</property>

<property>
<name>yarn.app.mapreduce.am.command-opts</name>
<value>-Xmx1024m
—Dhadoop.conf.dir=$HADOOP_HOME/etc/hadoop</value>

15

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

<description>Java opts for the MR App Master processes. The
following symbol, if present, will be interpolated: (@taskidd
is replaced by current TaskID. Any other occurrences of '@’
will go unchanged. For example, to enable verbose gc logging
to a file named for the taskid in /tmp and to set the heap
maximum to be a gigabyte, pass a ’'value’ of: -Xmx1024m
-verbose:gc -Xloggc:/tmp/@taskid@.gc

Usage of -Djava.library.path can cause programs to no longer
function if hadoop native libraries are used. These values
should instead be set as part of LD_LIBRARY PATH in the map
/ reduce JVM env using the mapreduce.map.env and
mapreduce.reduce.env config settings.</description>

</property>

<property>
<name>yarn.app.mapreduce.am.env</name>
<value>LD_LIBRARY PATH=S${HADOOP_HOME}/lib/native</value>
<description>User added environment variables for the MR App
Master
processes. Example
1) A=foo This will set the env variable A to foo
2) B=SB:c This is inherit tasktracker’s B env variable.
</description>
</property>

<property>
<name>mapreduce. jobtracker.system.dir</name>
<value><lustre-path-data-dir>/mapred/system</value>

<description>The directory where MapReduce stores control files.

</description>
</property>

<property>
<name>mapreduce. jobtracker.staging.root.dir</name>
<value><lustre—-path-data-dir>/mapred/staging</value>
<description>The root of the staging area for users’ job files.
</description>

</property>

<property>
<name>yarn.app.mapreduce.am.staging-dir</name>
<value><lustre—-path-data-dir>/yarn/staging</value>
<description>The staging dir used while submitting jobs.
</description>

</property>

16

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

<property>
<name>mapred.rdma.shuffle.lustre</name>
<value>1</value>
<description>This parameter enables mapreduce over lustre with
all enhanced shuffle algorithms. For MapReduce over Lustre
with local disks, this parameter value should be 1. The
default value of this parameter is -1, which enables
RDMA-based shuffle for MapReduce over HDFS.</description>
</property>

</configuration>

4. Configure the core-site.xml file.

<configuration>
<property>
<name>fs.defaultFS</name>
<value>file://<lustre-path-data-dir>/namenode</value>
<description>The name of the default file system. A URI whose
scheme and authority determine the FileSystem
implementation. The uri’s scheme determines the config
property (fs.SCHEME.impl) naming the FileSystem
implementation class. The uri’s authority is used to
determine the host, port, etc. for a
filesystem.</description>
</property>

<property>
<name>fs.local.block.size</name>
<value>268435456</value>
<description>This value should be equal to Lustre stripe
size.</description>
</property>

<property>
<name>hadoop.ib.enabled</name>
<value>true</value>
<description>Enable/Disable the RDMA feature over IB. Default
value of hadoop.ib.enabled is true.</description>
</property>

<property>
<name>hadoop.roce.enabled</name>
<value>false</value>
<description>Enable/Disable the RDMA feature over RoCE. Default
value of hadoop.roce.enabled is false.</description>

17

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

</property>

<property>
<name>hadoop.tmp.dir</name>
<value>/tmp/hadoop_local</value>
<description>A base for other temporary
directories.</description>
</property>
</configuration>

5. Configure the yarn—site.xml file as specified in Section 3.4.1.

6. Configure the slaves file as specified in Section 3.4.1.

3.4.6 MapReduce over Lustre without Local Disks

For MapReduce over Lustre without local disks, Lustre should provide the intermediate data directories for
MapReduce jobs. However, to do this, Hadoop tmp directory (‘“hadoop.tmp.dir’’) must have separate paths to
Lustre for each NodeManager. This can be achieved by installing a separate Hadoop package on each node
with difference in the configuration value for “hadoop.tmp.dir”. To enable MapReduce over Lustre with this
setting, we use the following configuration steps:

1. Make the Lustre data directory and configure the stripe size as specified in Section 3.4.5.

2. Copy the hadoop installation on each of the slaves in a local dir of that node. Note that, this step is a
requirement for this mode.

3. Configure mapred-site.xml file.

<configuration>

<property>
<name>mapreduce. framework.name</name>
<value>yarn</value>
<description>Execution framework set to Hadoop
YARN.</description>
</property>

<property>

<name>yarn.app.mapreduce.am.command-opts</name>

<value>-Xmx1024m
—Dhadoop.conf.dir=$SHADOOP_HOME /etc/hadoop</value>

<description>Java opts for the MR App Master processes. The
following symbol, if present, will be interpolated: @taskid@
is replaced by current TaskID. Any other occurrences of '@’
will go unchanged. For example, to enable verbose gc logging

18

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

to a file named for the taskid in /tmp and to set the heap
maximum to be a gigabyte, pass a ’'value’ of: -Xmx1024m
-verbose:gc —-Xloggc:/tmp/Q@taskidl.gc

Usage of -Djava.library.path can cause programs to no longer
function if hadoop native libraries are used. These values
should instead be set as part of LD_LIBRARY PATH in the map
/ reduce JVM env using the mapreduce.map.env and
mapreduce.reduce.env config settings.

</description>

</property>

<property>
<name>yarn.app.mapreduce.am.env</name>
<value>LD_LIBRARY_PATH=${HADOOP_HOME}/lib/native</value>
<description>User added environment variables for the MR App

Master

processes. Example
1) A=foo This will set the env variable A to foo
2) B=S$B:c This i1s inherit tasktracker’s B env variable.
</description>

</property>

<property>
<name>mapreduce. jobtracker.system.dir</name>
<value><lustre-path-data-dir>/mapred/system</value>
<description>The directory where MapReduce stores control files.
</description>

</property>

<property>
<name>mapreduce. jobtracker.staging.root.dir</name>
<value><lustre-path-data-dir>/mapred/staging</value>
<description>The root of the staging area for users’ job files.
</description>

</property>

<property>
<name>yarn.app.mapreduce.am.staging-dir</name>
<value><lustre-path-data-dir>/yarn/staging</value>
<description>The staging dir used while submitting jobs.
</description>

</property>

<property>
<name>mapred.rdma.shuffle.lustre</name>
<value>2</value>

19

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

<description>This parameter enables Mapreduce over Lustre with
all enhanced shuffle algorithms. For MapReduce over Lustre
without local disks, it can have a value of 0, 1, 2, or any
fractional value in between 0 and 1. A value of 1 indicates
that the entire shuffle will go over RDMA; a value of 0
indicates that the Lustre file system read operation will
take place instead of data shuffle. Any value in between
(e.g. 0.70) indicates some shuffle going over RDMA (70%);
while the rest is Lustre Read (30%). A special value of 2
enables a hybrid shuffle algorithm for MapReduce over Lustre
with Lustre as intermediate data dir. The default value of
this parameter is -1, which enables RDMA-based shuffle for
MapReduce over HDFS.</description>

</property>

</configuration>

4. Configure the core-site.xml file for each NodeManager separately.

<configuration>
<property>
<name>fs.defaultFS</name>
<value>file://<lustre-path-data-dir>/namenode</value>
<description>The name of the default file system. A URI whose
scheme and authority determine the FileSystem
implementation. The uri’s scheme determines the config
property (fs.SCHEME.impl) naming the FileSystem
implementation class. The uri’s authority is used to
determine the host, port, etc. for a
filesystem.</description>
</property>

<property>
<name>fs.local.block.size</name>
<value>268435456</value>
<description>This value should be equal to Lustre stripe
size.</description>
</property>

<property>
<name>hadoop.ib.enabled</name>
<value>true</value>
<description>Enable/Disable the RDMA feature over IB. Default
value of hadoop.ib.enabled is true.</description>
</property>

20

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

<property>
<name>hadoop.roce.enabled</name>
<value>false</value>
<description>Enable/Disable the RDMA feature over RoCE. Default
value of hadoop.roce.enabled is false.</description>
</property>

<property>
<name>hadoop.tmp.dir</name>
<value><lustre-path-data-dir>/tmp_{S$nodeID}</value>
<description>A base for other temporary directories. For
MapReduce over Lustre with Lustre providing the intermediate
data storage, this parameter value should be different for
each NodeManager. For example, the first NodeManager in the
slaves file may have a value of
<lustre-path-data-dir>/tmp_0, while the second NodeManager
can be configured with <lustre-path-data-dir>/tmp_1, and so
on. Any value can replace $nodeID in the value here as long
as the value is different for each node.</description>
</property>
</configuration>

5. Configure the yarn—-site.xml file as specified in Section 3.4.1.

6. Configure the slaves file as specified in Section 3.4.1.

3.5 Advanced Configuration

Some advanced features in RDMA for Apache Hadoop 2.x 1.3.5 can be manually enabled by users. Steps to
configure these features in RDMA for Apache Hadoop 2.x 1.3.5 are discussed in this section.

3.5.1 RDMA Device Selection

Users can specify which RDMA device Hadoop should should utilize in the case where more than one of
such devices is installed. Users can select the RDMA device to be used either by ID or by name in the
core—site.xml file. By default, RDMA for Apache Hadoop 2.x 1.3.5 will the device with ID 0 if none
of the following parameters are defined. Theses parameters are applicable for all modes.

<property>
<name>hadoop.rdma.dev.name</name>
<value>mlx4_0</value>
<description>Specify the name of the RDMA device to be used. This
takes precedence over hadoop.rdma.dev.num if both are set.
</description>
</property>

21

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

<property>
<name>hadoop.rdma.dev.num</name>
<value>0</value>
<description>Specify the ID of the RDMA device to be used.
</description>
</property>

3.5.2 Parallel Replication

Enable parallel replication in HDFS by configuring hdfs—-site.xml file. By default, RDMA for Apache
Hadoop 2.x 1.3.5 will choose the pipeline replication mechanism. This parameter is applicable for HHH and
HHH-M modes as discussed in Section 3.4.1 and Section 3.4.2, respectively.

<property>
<name>dfs.replication.parallel.enabled</name>
<value>true</value>
<description>Enable the parallel replication feature in HDFS.
Default value of dfs.replication.parallel is false.
</description>
</property>

3.5.3 Placement Policy Selection

Select specific placement policy (Greedy or Balanced) in HDFS by configuring hdfs-site.xml file.
By default, RDMA for Apache Hadoop 2.x 1.3.5 selects policy automatically based on the storage types
of the HDFS data directories. This parameter is applicable for HHH and HHH-L modes as discussed in
Section 3.4.1 and Section 3.4.4, respectively.

<property>
<name>dfs.rdma.placement .policy</name>
<value>Greedy/Balanced</value>
<description>Enable specific data placement policy. </description>
</property>

3.54 Automatic Placement Policy Selection

By default, RDMA for Apache Hadoop 2.x 1.3.5 selects policy automatically based on the storage types
of the HDFS data directories. This parameter can be used if the user wants to disable automatic policy
detection. This parameter is applicable for HHH mode as discussed in Section 3.4.1.

<property>
<name>dfs.rdma.policy.autodetect</name>
<value>false</value>

22

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

<description>Disable automatic policy detection (default is
true). </description>
</property>

In order to use the storage policies of default HDFS, users should not use the dfs.rdma.placement.policy
parameter as discussed in Section 3.5.3 and disable policy auto detection.

3.5.5 Threshold of RAM Disk Usage

Select a threshold of RAM Disk usage in HDFS by configuring hdfs-site.xml file. By default, RDMA
for Apache Hadoop 2.x 1.3.5 uses 70% of RAM Disk when RAM Disk is configured as a HDFS data
directory. This parameter is applicable for HHH, HHH-M, and HHH-L modes as discussed in Section 3.4.1,
Section 3.4.2, and Section 3.4.4, respectively.

<property>
<name>dfs.rdma.memory.percentage</name>
<value>0.5</value>
<description>Select a threshold (default = 0.7) for RAM Disk usage.
</description>
</property>

3.5.6 No. of In-Memory Replicas

Select the number of in-memory replicas in HHH mode by configuring hdfs-site.xml file. By default,
RDMA for Apache Hadoop 2.x 1.3.5 writes two replicas to RAM Disk and one to persistent storage (repli-
cation factor = 3). The no. of in-memory replicas can be changed from one to no. of replication factor (all
in-memory). This parameter is applicable for HHH mode as discussed in Section 3.4.1.

<property>
<name>dfs.rdma.memory.replica</name>
<value>3</value>
<description>Select no. of in-memory replicas (default = 2).
</description>
</property>

3.5.7 Disk-assisted Shuffle

Enable disk-assisted shuffle in MapReduce by configuring mapred-site.xml file. By default, RDMA
for Apache Hadoop 2.x 1.3.5 assumes that disk-assisted shuffle is disabled. We encourage our users to
enable this parameter if they feel that the local disk performance in their cluster is good. This parameter is
applicable for all the modes in RDMA for Apache Hadoop 2.x 1.3.5.

<property>
<name>mapred.rdma.disk.shuffle.enabled</name>

23

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

<value>true</value>
<description>Enable disk-assisted shuffle in MapReduce. Default
value of mapred.disk-assisted.shuffle.enabled is false.
</description>
</property>

3.5.8 SSD Optimization for Intermediate Data

Enable SSD-based shuffle in MapReduce by configuring mapred-site.xml file. By default, RDMA for
Apache Hadoop 2.x 1.3.5 assumes that SSD is not used for intermediate data directories. We encourage
our users to enable this parameter if they configure SSD for intermediate data directories. This parameter is
applicable for all the modes in RDMA for Apache Hadoop 2.x 1.3.5.

<property>
<name>mapred.rdma.local.ssd.used</name>
<value>true</value>
<description>Enable SSD-assisted shuffle in MapReduce. Default
value of mapred.rdma.local.ssd.used is false. </description>
</property>

3.5.9 In-memory Spill of Intermediate Map Output

Enable in-memory spilling of intermediate map output in MapReduce by configuring mapred-site.xml
file. By default, RDMA for Apache Hadoop 2.x 1.3.5 assumes that intermediate data would be spilled to
hadoop.tmp.dir. We encourage our users to enable this parameter if each node consists of a large RAM
space. This parameter is applicable for all the modes in RDMA for Apache Hadoop 2.x 1.3.5.

<property>
<name>mapred.map.inmem.spill</name>
<value>true</value>
<description>Enable in-memory spill of map output in MapReduce.
Default value of mapred.map.inmem.spill is false. </description>
</property>

3.5.10 Heap Memory Threshold for Reduce Tasks.

Set the threshold of heap memory for Reduce tasks by configuring mapred-site.xml file. We encourage
our users to enable this parameter if each node consists of a large RAM space. Increasing this threshold has
been found to be particularly beneficial for MRoLustre workloads. This parameter is applicable for all the
modes in RDMA for Apache Hadoop 2.x 1.3.5.

<property>
<name>mapreduce.rdma.reduce.heap.threshold</name>
<value>6000</value>

24

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

<description>The threshold of heap memory utilized by Reducer
processes.</description>
</property>

3.5.11 Locality-aware Shuffle

Enable locality-aware shuffle in MapReduce by configuring mapred-site.xml file. By default, RDMA
for Apache Hadoop 2.x 1.3.5 assumes that locality-aware shuffle is disabled. We encourage our users to
enable this parameter if they feel that the network I/O of their cluster is good. This parameter is applicable
for all the modes in RDMA for Apache Hadoop 2.x 1.3.5.

<property>
<name>mapred.rdma.disk.shuffle.enabled</name>
<value>true</value>
<description>Enable locality-aware shuffle in MapReduce. Default
value of mapred.disk—assisted.shuffle.enabled is
false.</description>
</property>

3.5.12 No. of DataNode Block Handlers

By default, RDMA for Apache Hadoop 2.x 1.3.5 selects the number of DataNode block hanlders based on
the server architecture. This parameter can be used by configuring hdfs—site.xml if the user wants to

change the default number. This parameter is applicable for all the modes in RDMA for Apache Hadoop 2.x
1.3.5.

<property>
<name>dfs.rdma.block-handler.num</name>
<value>128</value>
<description>Select no. of DataNode block handlers. Default value
of dfs.rdma.block-handler.num for x86 architecture is 32, and
for POWER architecture is 64.</description>
</property>

3.5.13 Singularity Support

RDMA for Apache Hadoop 2.x 1.3.5 has support for Singularity. To enable this support, users can add the
following line to their hadoop—env. sh file.

export HADOOP_SINGULARITY_ ENABLED=true

25

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

3.5.14 Docker Support

RDMA for Apache Hadoop 2.x 1.3.5 supports Docker out-of-the-box and no additional configuration is
required. All other advanced configuration parameters are supported in a dockerized environment as well.

4 Basic Usage Instructions

RDMA for Apache Hadoop 2.x 1.3.5 has management operations similar to default Apache Hadoop 2.8.0.
This section lists several of them for basic usage.

4.1 Startup
4.1.1 MapReduce over HDFS
To run MapReduce over HDFS with any of the modes (HHH/HHH-M/HHH-L), please follow these steps.

1. Use the following command to format the directory which stores the namespace and transactions logs
for NameNode.

S bin/hdfs namenode —-format

2. Start HDFS with the following command:
$ sbin/start-dfs.sh

3. Start YARN with the following command:
$ sbin/start-yarn.sh

To run Hadoop in HHH-L-BB mode, please follow these steps.

1. Use the following command to format the directory which stores the namespace and transactions logs
for NameNode.

$ bin/hdfs namenode -format
2. Download RDMA-based Memcached release 0.9.5 and start Memcached with the following com-
mand:

S bin/memcached -m 20480 -o burst_buffer=/ssd/bb

3. Start HDFS with the following command:
$ sbin/start-dfs.sh

4. Start YARN with the following command:
$ sbin/start-yarn.sh

26

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

4.1.2 MapReduce over Lustre

To run MapReduce over Lustre, startup involves starting YARN only.

1. Start YARN with the following command:

$ sbin/start-yarn.sh

4.2 Basic Commands

1. Use the following command to manage HDFS:

$ bin/hdfs dfsadmin
Usage: Jjava DFSAdmin
Note: Administrative commands can only be run as the HDFS

superuser.

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

report]

safemode enter | leave | get | wait]
—allowSnapshot <snapshotDir>]
—disallowSnapshot <snapshotDir>]
—saveNamespace]

—rollEdits]

—-restoreFailedStorage true|false|check]
—refreshNodes]

—finalizeUpgrade]

—rollingUpgrade [<query|prepare|finalize>]]
-metasave filename]

refreshServiceAcl]
refreshUserToGroupsMappings]

—-refreshSuperUserGroupsConfiguration]
—refreshCallQueue]

—printTopology]

—refreshNamenodes datanodehost:port]

—deleteBlockPool datanode-host:port blockpoolId [force]]
—-setQuota <gquota> <dirname>...<dirname>]

—clrQuota <dirname>...<dirname>]

—-setSpaceQuota <quota> <dirname>...<dirname>]
—clrSpaceQuota <dirname>...<dirname>]
—-setBalancerBandwidth <bandwidth in bytes per second>]
—fetchImage <local directory>]

—-shutdownDatanode <datanode_host:ipc_port> [upgrade]]
—getDatanodeInfo <datanode_host:ipc_port>]

—help [cmd]]

Generic options supported are

27

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

—conf <configuration file> specify an application configuration
file

-D <property=value> use value for given property

—fs <local |namenode:port> specify a namenode

—jt <local | jobtracker:port> specify a job tracker

—files <comma separated list of files> specify comma separated
files to be copied to the map reduce cluster

—libjars <comma separated list of jars> specify comma separated
Jar files to include in the classpath.

—archives <comma separated list of archives> specify comma
separated archives to be unarchived on the compute machines.

For example, we often use the following command to show the status of HDFS:

$ bin/hdfs dfsadmin -report

2. Use the following command to manage files in HDFS:

$ bin/hdfs dfs
Usage: hadoop fs [generic options]
pendToFlle <localsrc> ... <dst>]
[-ignoreCrc] <src> ...]
checksum <src> ...]

[-
[-
[-
[-chgrp [-R] GROUP PATH...]
[-
[-
[-
[-

chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...]

chown [-R] [OWNER] [:[GROUP]] PATH...]

copyFromLocal [-f] [-p] <localsrc> ... <dst>]

copyToLocal [-p] [—-ignoreCrc] [-crc] <src>
<localdst>]

count [—qgq] <path> ...]

cp [-f] [-p] <src> ... <dst>]

createSnapshot <snapshotDir> [<snapshotName>]]
deleteSnapshot <snapshotDir> <snapshotName>]

df [-h] [<path> ...]1]

—du [-s] [-h] <path> ...]

expunge]

ge [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
getfacl [-R] <path>]

getmerge [-nl] <src> <localdst>]
help [cmd ...]]

[-d] [-h] [-R] [<path> ...]]
mkdlr [-p] <path> ...]
—-moveFromLocal <localsrc> ... <dst>]
—-moveToLocal <src> <localdst>]

-mv <src> ... <dst>]
-pu [-f] [-p] <localsrc> ... <dst>]

[-
[-
[-
[-
[-
[-
[-
[-
[-
[-
[-
[-
[-
[
[-
[
[
[-

renameSnapshot <snapshotDir> <oldName> <newName>]

28

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

[-rm [-f] [-r|-R] [-skipTrash] <src> ...]
[-rmdir [-—-ignore-fail-on-non-empty] <dir> ...]
[-setfacl [-R] [{-b|-k} {—-m|-x <acl_spec>} <path>]|[-—-set
<acl_spec> <path>]]
setrep [-R] [-w] <rep> <path> ...]

[_
[-stat [format] <path> ...]
[-tail [-f] <file>]

[-test —[defsz] <path>]

[-text [—-ignoreCrc] <src> ...]
[-touchz <path> ...]

[-usage [cmd ...]]

Generic options supported are

—conf <configuration file> specify an application configuration
file

-D <property=value> use value for given property

—fs <local |namenode:port> specify a namenode

—jt <local | jobtracker:port> specify a job tracker

—files <comma separated list of files> specify comma separated
files to be copied to the map reduce cluster

—libjars <comma separated list of jars> specify comma separated
Jar files to include in the classpath.

—archives <comma separated list of archives> specify comma
separated archives to be unarchived on the compute machines.

For example, we can use the following command to list directory contents of HDFS:

$ bin/hdfs dfs -1s /

3. Use the following command to interoperate with the MapReduce framework:

$ bin/mapred job

Usage: JobClient <command> <args>

—submit <job-file>]

—-status <job-id>]

—counter <job-id> <group-name> <counter-name>]

-kill <job-id>]

—-set-priority <job-id> <priority>]. Valid values for
priorities are: VERY_HIGH HIGH NORMAL LOW VERY_LOW

—events <job-id> <from-event-#> <#-of-events>]

—history <jobOutputDir>]

list [all]]

list-active-trackers]

list-blacklisted-trackers]

list-attempt-ids <job-id> <task-type> <task-state>]

[
[
[
[
[

[
[
[
[
[
[

[-kill-task <task-id>]

29

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

4.3

4.3.1

[-fail-task <task-id>]

Usage: CLI <command> <args>
[-submit <job-file>]
[-status <job-id>]
[-counter <job-id> <group-name> <counter-name>]
[-kill <job-id>]
[-set-priority <job-id> <priority>]. Valid values for
priorities are: VERY_HIGH HIGH NORMAL LOW VERY_LOW

—events <job-id> <from-event-#> <#-of-events>]

—history <jobHistoryFile>]

-list [all]]

—list-active-trackers]

—list-blacklisted-trackers]

—list-attempt-ids <job-id> <task-type> <task-state>]. Valid
values for <task-type> are REDUCE MAP. Valid values for
<task-state> are running, completed

[-kill-task <task-attempt-id>]

[-fail-task <task-attempt-id>]

[-logs <job-id> <task-attempt-id>]

Generic options supported are

—conf <configuration file> specify an application configuration
file

-D <property=value> use value for given property

—fs <local |namenode:port> specify a namenode

—jt <local | jobtracker:port> specify a job tracker

—files <comma separated list of files> specify comma separated
files to be copied to the map reduce cluster

—libjars <comma separated list of jars> specify comma separated
Jar files to include in the classpath.

—archives <comma separated list of archives> specify comma
separated archives to be unarchived on the compute machines.

For example, we can use the following command to list all active trackers of MapReduce:

$ bin/mapred job -list-active-trackers

Shutdown

MapReduce over HDFS

. Stop HDFS with the following command:

$ sbin/stop-dfs.sh

30

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

2. Stop YARN with the following command:

$ sbin/stop-yarn.sh

4.3.2 MapReduce over Lustre

1. Stop YARN with the following command:
$ sbin/stop-yarn.sh

4.4 Usage with Docker

Jobs can be run on the Docker-based cluster in the same way as a bare metal cluster. Users should log in to
a Docker instance before running any Hadoop commands. For example, an interactive shell can be run on a
Docker instance by running a command like:

S docker exec —-i -t <instance name> /bin/bash

Then, the HDFS can be started by running the following command inside the Hadoop directory.
$ sbin/start-dfs.sh

Similarly, other commands can be used as mentioned before.

4.5 Usage with Singularity

All jobs should be run from within the Singularity instance which runs the namenode. Users can launch an
interactive shell in a Singularity instance using the following command

singularity shell instance://‘hostname -s‘

Or any generic command can be run using the exec method as follows

singularity exec —-writable ‘hostname -s‘' <command>

Once an interctive shell is launched on a Singularity instance, HDFS can be started by running the
following command inside the Hadoop directory.

S sbin/start-dfs.sh

Similarly, other commands can be used as mentioned before.

5 Running RDMA for Apache Hadoop with SLURM/PBS

To run RDMA for Apache Hadoop with SLURM/PBS, scripts in HADOOP_HOME /bin/slurm pbs/ di-
rectory can be used. These scripts can be used in interactive mode or batch mode. In the interactive mode,

31

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

the user must allocate interactive nodes, and explicitly use the startup, run benchmark, and shutdown com-
mands described Sections 5.2 or 5.3, in their interactive session. In the batch mode, the users must create
and lauch a SLURMY/PBS batch script with the startup, run benchmark, and shutdown commands described
Sections 5.2 or 5.3.

Detailed steps for using these scripts are described in Sections 5.1, 5.2 and 5.3.

5.1 Usage

This section gives an overview of the SLURM/PBS scripts and their usage for startup and shutdown for
running a Hadoop cluster.

5.1.1 Configure and Start a Hadoop Job

For installing, configuring, and starting RDMA for Apache Hadoop with any particular mode of operation,
hibd_install_configure_start.sh can be used. This script can configure and start Hadoop de-
pending on the parameters provided by the user. Detailed parameter options available with this script are
mentioned below:

$./hibd_install_configure_start.sh ?
Usage: hibd _install_configure_start.sh [options]
-h <dir>
specify location of hadoop installation a.k.a. hadoop home

-m <hhh | hhh-m | hhh-1 | mrlustre-local | mrlustre—-lustre>
specify the mode of operation (default: hhh). For more
information, visit http://hibd.cse.ohio-state.edu/overview/

-c <dir>
specify the hadoop conf dir (default: ""). If user provides
this directory, then the conf files are chosen from this
directory. Otherwise, the conf files are generated automatically
with/without user provided configuration with flag ’-u’

-J <dir>
specify jdk installation or JAVA_HOME (default: ""). If user
does not provide this, then java installation is searched in
the environment.

-u <file>
specify a file containing all the configurations for hadoop
installation (default: n/a). Each line of this file must be
formatted as below:
"<C|H|M|Y>\t<parameter_name>\t<parameter_value>"
C = core-site.xml, H = hdfs-site.xml, M = mapred-site.xml,

32

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

Y = yarn—-site.xml

<dir>

specify the Lustre path to use for hhh-1, mrlustre-local,
and mrlustre-lustre modes (default: "")

<dir>

specify the ram disk path to use for hhh and hhh-m modes
(default: /dev/shm)

specify to start hadoop after installation and configuration

show this help message

5.1.2 Shutdown Hadoop Cluster

After running a benchmark with the script indicated in Section 5.1.1, stopping the Hadoop cluster with
cleanup of all the directories can be achieved by using the script hibd_stop_cleanup. sh. Similar to the
startup script, this cleanup script can makes different parameters available to the user. Detailed parameter
options available with this script are mentioned below:

$./hibd_stop_cleanup.sh ?

Usage:

-h

hibd_stop_cleanup.sh [options]
<dir>
specify location of hadoop installation a.k.a. hadoop home

<hhh | hhh-m | hhh-1 | mrlustre-local | mrlustre-lustre>
specify the mode of operation (default: hhh).

For more information, visit
http://hibd.cse.ohio-state.edu/overview/

<dir>
specify the hadoop conf dir (default: "").

<dir>
specify the Lustre path to use for hhh-1, mrlustre-local,
and mrlustre—-lustre modes (default: "")

<dir>
specify the ram disk path to use for hhh and hhh-m modes
(default: /dev/shm)

33

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

specify to delete logs and data after hadoop stops

show this help message

Details of the usage of the above-mentioned scripts can also be found in slurm-script.sh

5.2 Running MapReduce over HDFS with SLURM/PBS

The user can run MapReduce over HDES in one of the three modes: HHH, HHH-M or HHH-L. Based on
the parameters supplied to the hibd_install_configure_start.sh script, Hadoop cluster will start
with the requested mode of operation configuration setting.

5.2.1 Startup

To start Hadoop in HHH mode, the following command can be used:

$ hibd_install_configure_start.sh -s -m hhh-default -r /dev/shm -h
SHADOOP_HOME -7 SJAVA_HOME

To start Hadoop in HHH-M mode, the following command can be used:

$ hibd_install_configure_start.sh -s -m hhh-m -r /dev/shm -h
SHADOOP__HOME =7 SJAVA_HOME

To start Hadoop in HHH-L mode, the following command can be used:

$ hibd_install_configure_start.sh -s -m hhh-1 -r /dev/shm -h
SHADOOP_HOME -3 S$JAVA_HOME -1 <lustre_path>

5.2.2 Running Benchmarks

User can launch a benchmark after successful start of the Hadoop cluster. While running a benchmark, user
should provide the Hadoop config directory using ——config flag with hadoop script. If user does not have
any pre-configured files, the default config directory will be created in the present working directory named
as conf concatenated with job id.

$ SHADOOP_HOME/bin/hadoop —--config ./conf_<job_id> jar
SHADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce—-examples—+.jar
randomwriter -Dmapreduce.randomwriter.mapsperhost=4
—Dmapreduce.randomwriter.bytespermap=67108864 rand_in

$ SHADOOP_HOME/bin/hadoop —-config ./conf_<job_id> jar
SHADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples—x*.jar
sort rand_ in rand_out

34

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

5.2.3 Shutdown

In order to stop Hadoop and cleanup the corresponding logs, the following command can be used:

S hibd_stop_cleanup.sh -d -1 <lustre_path> -h $SHADOOP_HOME

5.3 Running MapReduce over Lustre with SLURM/PBS
5.3.1 Startup

To start Hadoop in MapReduce over Lustre with local disks mode, the following command can be used:

$ hibd_install_configure_start.sh -s -m mrlustre-local -1
<lustre_path> —-j $JAVA_HOME -h SHADOOP_HOME

To start Hadoop in MapReduce over Lustre without local disks mode, the following command can be used:

S hibd_install_configure_start.sh -s -m mrlustre-lustre -1
<lustre_path> —-j $JAVA_HOME -h SHADOOP_HOME

5.3.2 Running Benchmarks

Running benchmark for MapReduce over Lustre with local disks follows the same guidelines as shown
above. For benchmarks running on MapReduce over Lustre without local disks, the following command
should be used.

$ /tmp/hadoop_install_<job_id>/bin/hadoop jar
/tmp/hadoop_install_<job_id>/share/hadoop/mapreduce/
hadoop-mapreduce-examples—+.jar randomwriter
—Dmapreduce.randomwriter.mapsperhost=4
—-Dmapreduce.randomwriter.bytespermap=67108864
file://<lustre_path>/hibd_data_<job_id>/rand_in

$ /tmp/hadoop_install_<job_id>/bin/hadoop jar
/tmp/hadoop_install_<job_id>/share/hadoop/mapreduce/
hadoop-mapreduce-examples—+.Jjar sort
file://<lustre_path>/hibd_data_<job_id>/rand_in
file://<lustre_path>/hibd_data_<job_id>/rand_out

5.3.3 Shutdown

For stopping Hadoop and clean the used directories, the same command as shown above can be used.

35

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

6 Benchmarks

6.1 TestDFSIO

The TestDFSIO benchmark is used to measure 1/O performance of the underlying file system. It does this by
using a MapReduce job to read or write files in parallel. Each file is read or written in a separate map task
and the benchmark reports the average read/write throughput per map.

On a client node, the TestDFSIO write experiment can be run using the following command:

$ bin/hadoop Jjar
share/hadoop/mapreduce/hadoop-mapreduce-client—-jobclient—-*x-tests. jar
TestDFSIO —-write —-nrFiles <nfiles> —-fileSize <fsize>

This command writes ‘nfiles’ files and ‘fsize’ MB each.

To run the same job with MapReduce over Lustre, one additional config parameter must be added in
mapred-site.xml.

<property>
<name>test .build.data</name>
<value><lustre-path-data-dir>/benchmarks/TestDFSIO</value>
</property>

After adding this config parameter, the same command as mentioned above can be used to launch TestDF-
SIO experiment on top of Lustre.

6.2 Sort

The Sort benchmark uses the MapReduce framework to sort the input directory into the output directory. The
inputs and outputs are sequence files where the keys and values are BytesWritable. Before running the
Sort benchmark, we can use RandomWriter to generate the input data. RandomWriter writes random data
to HDFS using the MapReduce framework. Each map takes a single file name as input and writes random
BytesWritable keys and values to the HDFS sequence file.

On a client node, the RandomWriter experiment can be run using the following command:

$ bin/hadoop Jjar
share/hadoop/mapreduce/hadoop-mapreduce—examples—+.jar randomwriter
—Dmapreduce.randomwriter.bytespermap=<nbytes>
—-Dmapreduce.randomwriter.mapsperhost=<nmaps> <out-dir>

This command launches ‘nmaps’ maps per node, and each map writes ‘nbytes’ data to ‘out-dir’.

On a client node, the Sort experiment can be run using the following command:

$ bin/hadoop Jjar
share/hadoop/mapreduce/hadoop—-mapreduce—-examples—+*.jar sort -r
<nreds> <in-dir> <out-dir>

36

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

This command launches ‘nreds’ reduces to sort data from ‘in-dir’ to ‘out-dir’.
The input directory of Sort can be the output directory of RandomWriter.

To run the same job with MapReduce over Lustre, the following commands can be used.

$ bin/hadoop Jjar
share/hadoop/mapreduce/hadoop—mapreduce—examples—+.jar randomwriter
—Dmapreduce.randomwriter.bytespermap=<nbytes>
—Dmapreduce.randomwriter.mapsperhost=<nmaps>
file:///<lustre-path-data-dir>/<out-dir>

$ bin/hadoop Jjar
share/hadoop/mapreduce/hadoop—-mapreduce-examples—+.jar sort -r
<nreds> file:///<lustre-path-data-dir>/<in-dir>
file:///<lustre-path-data-dir>/<out-dir>

6.3 TeraSort

TeraSort is probably the most well-known Hadoop benchmark. It is a benchmark that combines testing the
HDEFS and MapReduce layers of a Hadoop cluster. The input data for TeraSort can be generated by the
TeraGen tool, which writes the desired number of rows of data in the input directory. By default, the key and
value size is fixed for this benchmark at 100 bytes. TeraSort takes the data from the input directory and sorts
it to another directory. The output of TeraSort can be validated by the TeraValidate tool.

Before running the TeraSort benchmark, we can use TeraGen to generate the input data as follows:

$ bin/hadoop Jjar
share/hadoop/mapreduce/hadoop—-mapreduce—-examples—«*.jar teragen
<nrows> <out-dir>

This command writes ‘nrows’ of 100-byte rows to ‘out-dir’.

On a client node, the TeraSort experiment can be run using the following command:

$ bin/hadoop Jjar
share/hadoop/mapreduce/hadoop—mapreduce—-examples—«*.jar terasort
<in-dir> <out-dir>

This command sorts data from ‘in-dir’ to ‘out-dir’.

The input directory of TeraSort can be the output directory of TeraGen.

To run the same job with MapReduce over Lustre, the following commands can be used.

S bin/hadoop jar
share/hadoop/mapreduce/hadoop—-mapreduce—-examples—=*.jar teragen
<nrows> file:///<lustre-path-data-dir>/<out-dir>

$ bin/hadoop Jjar
share/hadoop/mapreduce/hadoop—mapreduce—examples—«*.jar terasort
file:///<lustre-path-data-dir>/<in-dir>
file:///<lustre-path-data-dir>/<out-dir>

37

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

6.4 OHB Micro-benchmarks

The OHB Micro-benchmarks support standalone evaluations of Hadoop Distributed File System (HDES),
Hadoop Database, HBase, Spark, and Memcached (See here). These benchmarks help fine-tune each com-
ponent avoiding the impact of others.

OSU HiBD-Benchmarks (OHB) have HDFS benchmarks for Sequential Write Latency (SWL), Sequen-
tial Read Latency (SRL), Random Read Latency (RRL), Sequential Write Throughput (SWT), Sequential
Read Throughput (SRT).

The source code can be downloaded from http://hibd.cse.ohio-state.edu/download/
hibd/osu-hibd-benchmarks-0.9.2.tar.gz. The source can be compiled with the help of the
Maven. More details on building and running the OHB Micro-benchmark are provided in the README.

A brief description of the benchmark is provided below:

Sequential Write Latency (SWL): This benchmark measures the latency of sequential write to HDFS. The
benchmark takes five parameters: file name (—fileName), file size (-fileSize), block size (-bSize),
replication factor (-rep), and buffer size (-bufSize). The mandatory parameters are file name and size
(in MB). The output of the benchmark is the time taken to write the file to HDFS. The buffer size indicates the
size of the write buffer. HDFS block size and replication factor can also be tuned through this benchmarks.
The benchmark also prints the important configuration parameters of HDFS.

Sequential Read Latency (SRL): This benchmark measures the latency of sequential read from HDFS. The
benchmark takes two parameters: file name and buffer size. The mandatory parameter is file name. The
output of the benchmark is the time taken to read the file from HDFS. The buffer size indicates the size of
the read buffer. The benchmark also prints the important configuration parameters of HDFS.

Random Read Latency (RRL): This benchmark measures the latency of random read from HDFS. The
benchmark takes four parameters: file name (-fileName), file size (-fileSize), skip size (-skipSize)
and buffer size (-bufSize). The mandatory parameters are file name and file size. The benchmark first
creates a file 2x the file (read) size and then randomly reads from it with a default skip size of 10. The output
of the benchmark is the time taken to read the file from HDFS. The buffer size indicates the size of the read
buffer. The benchmark also prints the important configuration parameters of HDFS.

Sequential Write Throughput (SWT): This benchmark measures the throughput of sequential write to
HDFS. The benchmark takes five parameters: file size (—fileSize), block size (-bSize), replication
factor (—rep), buffer size (-bufSize), and an output directory (-outDir) for the output files. The
mandatory parameters are file size (in MB) and the output directory. Linux xargs command is used to launch
multiple concurrent writers. File size indicates the write size per writer. A hostfile contains the hostnames
where the write processes are launched. The benchmark outputs the total write throughput in MBps. The
buffer size indicates the size of the write buffer. HDFS block size and replication factor can also be tuned
through this benchmarks.

Sequential Read Throughput (SRT): This benchmark measures the throughput of sequential read from
HDFS. The benchmark takes three parameters: file size (-fileSize), buffer size (-bufSize), and an
output directory (—outDir) for the output files. The mandatory parameters are file size (in MB) and the
output directory. Linux xargs command is used to launch multiple concurrent readers. File size indicates
the write size per reader. A hostfile contains the hostnames where the write processes are lauched. The

38

http://hibd.cse.ohio-state.edu/downloads/#benchmarks
http://hibd.cse.ohio-state.edu/download/hibd/osu-hibd-benchmarks-0.9.2.tar.gz
http://hibd.cse.ohio-state.edu/download/hibd/osu-hibd-benchmarks-0.9.2.tar.gz

RDMA for Apache Hadoop 2.x Network-Based Computing Laboratory, The Ohio State University

benchmark outputs the total read throughput in MBps. The buffer size indicates the size of the read buffer.

39

	Overview of the RDMA for Apache Hadoop 2.x Project
	Features
	Setup Instructions
	Prerequisites
	Download
	x86 Package
	POWER Package
	Plugin Package

	Installation steps
	Installing intergrated RDMA for Apache Hadoop package
	Installing RDMA-based plugin for Apache Hadoop, HDP, or CDH
	Installing RDMA for Apache Hadoop with Singularity
	Installing RDMA for Apache Hadoop with Docker

	Basic Configuration
	HDFS with Heterogeneous Storage (HHH)
	HDFS in Memory (HHH-M)
	HDFS with Heterogeneous Storage and Lustre (HHH-L)
	Hadoop with Memcached-based Burst Buffer and Lustre (HHH-L-BB)
	MapReduce over Lustre with Local Disks
	MapReduce over Lustre without Local Disks

	Advanced Configuration
	RDMA Device Selection
	Parallel Replication
	Placement Policy Selection
	Automatic Placement Policy Selection
	Threshold of RAM Disk Usage
	No. of In-Memory Replicas
	Disk-assisted Shuffle
	SSD Optimization for Intermediate Data
	In-memory Spill of Intermediate Map Output
	Heap Memory Threshold for Reduce Tasks.
	Locality-aware Shuffle
	No. of DataNode Block Handlers
	Singularity Support
	Docker Support

	Basic Usage Instructions
	Startup
	MapReduce over HDFS
	MapReduce over Lustre

	Basic Commands
	Shutdown
	MapReduce over HDFS
	MapReduce over Lustre

	Usage with Docker
	Usage with Singularity

	Running RDMA for Apache Hadoop with SLURM/PBS
	Usage
	Configure and Start a Hadoop Job
	Shutdown Hadoop Cluster

	Running MapReduce over HDFS with SLURM/PBS
	Startup
	Running Benchmarks
	Shutdown

	Running MapReduce over Lustre with SLURM/PBS
	Startup
	Running Benchmarks
	Shutdown

	Benchmarks
	TestDFSIO
	Sort
	TeraSort
	OHB Micro-benchmarks

