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Abstract

During the past several years, the MapReduce comput-
ing model has emerged as a scalable model that is capable
of processing petabytes of data. The Hadoop MapReduce
framework, has enabled large scale Internet applications
and has been adopted by many organizations. The Hadoop
Distributed File System (HDFS) lies at the heart of the
ecosystem of software. It was designed to operate and
scale on commodity hardware such as cheap Linux ma-
chines connected with Gigabit Ethernet. The field of High-
performance Computing (HPC) has been witnessing a
transition to commodity clusters. Increasingly, networks
such as InfiniBand and 10Gigabit Ethernet have become
commoditized and available on motherboards and as low-
cost PCI-Express devices. Software that drives InfiniBand
and 10Gigabit Ethernet works on mainline Linux kernels.
These interconnects provide high bandwidth along with
low CPU utilization for network intensive operations. As
the amounts of data processed by Internet applications
reaches hundreds of petabytes, it is expected that the
network performance will be a key component towards
scaling data-centers. In this paper, we examine the impact
of high-performance interconnects on HDFS. Our findings
reveal that the impact is substantial. We observe up to
11%, 30% and 100% performance improvement for the
sort, random write and sequential write benchmarks using
magnetic disks (HDD). We also find that with the emerging
trend of Solid State Drives, having a faster interconnect
makes a larger impact as local I/O costs are reduced. We
observe up to 48%, 59% and 219% improvement for the
same benchmarks when SSD is used in combination with
advanced interconnection networks and protocols.

I. Introduction

The MapReduce computing model has recently
emerged as a viable model for processing petabytes of
data. This model for processing data in large Internet
warehouses, was first proposed by Google Inc [7]. The
MapReduce model enables developers to write highly
parallel codes without dealing with many intricate details

of data distribution and fault tolerance. Most importantly,
the model aims to be efficient on commodity clusters
connected with Gigabit Ethernet. This model can handle
both structured and unstructured data. Since the time when
the MapReduce paper was published, Doug Cutting et.
al. started developing Hadoop, which is an Open-source
implementation of the MapReduce computing model. It
is available from the Apache Software Foundation [27].
The Hadoop MapReduce software relies on the Hadoop
Distributed File System (HDFS) as the underlying basis
for providing data distribution and fault tolerance. Over
time, HDFS has also become the underlying file system
for the Hadoop database (HBase), that is an Open-source
implementation of Google’s BigTable [6]. The goal of
HBase is to provide random, real time read/write access
to large quantities of data, in the order of billions of rows
and millions of columns.

The Hadoop project has gained widespread acceptance
and is very widely used in many organizations around the
world. As data gathering technologies (such as sensors)
witness an explosion, it is expected that in the future,
massive quantities of data in hundreds or thousands of
petabytes will need to be processed to gain insight into pat-
terns and trends. In order to process these large quantities
of data, many more thousands of servers may be required.
While the Hadoop framework has no fundamental scaling
limitations, recently there has been some discussion about
its efficiency. In particular, data-centers of the future cannot
expand at the rate at which data storage and gathering
capabilities are expanding. This is due to power limitations.
Improving efficiency of the HDFS will have a significant
impact on the design of future data-centers.

During the past decade, the field of High-performance
Computing has been witnessing a transition to commodity
clusters connected with modern interconnects such as In-
finiBand and 10Gigabit Ethernet. Increasingly, InfiniBand
has become commoditized and available on motherboards
and as low-cost PCI-Express devices. Software that drives
InfiniBand and 10Gigabit Ethernet also works on mainline
Linux kernels. These interconnects provide not only high
bandwidth (up to 32Gbps), and low latency (1µs-2µs), but
also help server scalability by using very little CPU and
reduced memory copies for network intensive operations.
The popularity of InfiniBand as such, can be measured by



the fact that 42.6% of the compute clusters in the Top500
list [29] of most powerful supercomputers use InfiniBand.
These clusters are very high on the efficiency metric,
i.e. performance achieved compared to peak performance.
Typical efficiencies of InfiniBand clusters range from 85%-
95%.

As the amount of data processed by Internet applica-
tions reaches hundreds of petabytes, it is expected that the
network performance will be a key component towards
scaling data-centers. In this paper, we examine the impact
of high-performance interconnects on HDFS. Our findings
reveal that the impact is substantial. We observe up to
11%, 30% and 100% performance improvement for the
sort, random write and sequential write benchmarks using
magnetic disks (HDD). We also find that with the emerging
trend of Solid State Drives, having a faster interconnect
makes a larger impact as local I/O costs are reduced. We
observe up to 48%, 59% and 219% improvement for the
same benchmarks when SSD is used in combination with
advanced interconnection networks and protocols.

The rest of the paper is organized as follows. In
Section II, we provide an overview of the topics dealt
with in this paper. In Section III, we show some of the
benefits of modern interconnects. Experimental results and
discussions are presented in Section IV. We discuss related
work in Section V. We conclude the paper in Section VI.

II. Background

In this Section, we provide a “bottom-up” overview of
networking and software components in a data-center that
is interconnected using High-performance networks.

A. InfiniBand Overview

InfiniBand [2] is an industry standard switched fabric
that is designed for interconnecting nodes in HEC clusters.
It is a high-speed, general purpose I/O interconnect that is
widely used by scientific computing centers world-wide.
The recently released TOP500 rankings in November 2010
reveal that more than 42% of the computing systems
use InfiniBand as their primary interconnect. The yearly
growth rate of InfiniBand in the TOP500 systems is pegged
at 30%, indicating a strong momentum in adoption. One of
the main features of InfiniBand is Remote Direct Memory
Access (RDMA). This feature allows software to remotely
read memory contents of another remote process without
any software involvement at the remote side. This feature
is very powerful and can be used to implement high-
performance communication protocols.

InfiniBand has started making inroads into the commer-
cial domain with the recent convergence around RDMA
over Converged Enhanced Ethernet (RoCE) [25].

1) InfiniBand Architecture: The InfiniBand specifica-
tion clearly demarcates the duties of hardware (such as
Host Channel Adapters (HCAs)) and software. The inter-
action between software and HCAs is carried out by the
verbs layer, which is described in the following section.
The InfiniBand fabric can consist of multi-thousand nodes
with multiple adapters. Typically, InfiniBand networks are
deployed using the fat-tree topology, which provides con-
stant bisection bandwidth. However, recently, some large
deployments have also adopted 3-D torus and hypercube
topologies. InfiniBand provides flexible static routing. The
routing tables at switches can be configured using the
Subnet Manager. For more details on InfiniBand please
refer to specification documents available from [11].

2) InfiniBand Verbs Layer: Upper-level software uses
an interface called verbs to access the functionality pro-
vided by HCAs and other network equipment (such as
switches). This is illustrated in Figure 1(a) (to the ex-
treme right). Verbs that are used to transfer data are
completely OS-bypassed. The verbs interface is a low-
level communication interface that follows the Queue Pair
(or communication end-points) model. Queue pairs are
required to establish a queue pair between themselves.
Each queue pair has a certain number of work queue
elements. Upper-level software places a work request on
the queue pair that is then processed by the HCA. When a
work element is completed, it is placed in the completion
queue. Upper level software can detect completion by
polling the completion queue.

Additionally, there are different types of Queue Pairs
based on the type of transport used. There are Reliably
Connected (RC) queue pairs that provide reliable trans-
mission (retransmissions after packet losses are performed
by the HCA). These RC queue pairs need to be established
uniquely for each communicating pair. This implies an
O(n2) memory usage (for a system with N processes).
Another type of queue pair is the Unreliable Datagram
(UD). This queue pair type does not provide reliable trans-
mission although it has a significant memory advantage –
only one UD QP is capable of communicating with all
remote processes. Thus, the memory usage of UD QP is
O(n) (for a system with N processes).

3) InfiniBand IP Layer: InfiniBand also provides a
driver for implementing the IP layer. This exposes the In-
finiBand device as just another network interface available
from the system with an IP address. Typically, Ethernet
interfaces are presented as eth0, eth1 etc. Similarly,
IB devices are presented as ib0, ib1 and so on. This
interface is presented in Figure 1(a) (second from the left,
named IPoIB). It does not provide OS-bypass. This layer
is often called “IP-over-IB” or IPoIB in short. We will use
this terminology in the paper. There are two modes avail-
able for IPoIB. One is the datagram mode, implemented
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Fig. 1. Overview of High-Performance Networking Stack and Hadoop Distributed File System

over Unreliable Datagram (UD), and the other is connected
mode, implemented over RC. The connected mode offers
better performance since it leverages reliability from the
hardware. In this paper, we have used connected mode
IPoIB.

4) InfiniBand Sockets Direct Protocol: Sockets Direct
Protocol (SDP) [4] is a byte-stream transport protocol
that closely mimics TCP socket’s stream semantics. It is
illustrated in Figure 1(a) (second from the right, named
SDP). It is an industry-standard specification that utilizes
advanced capabilities provided by the network stacks to
achieve high performance without requiring modifications
to existing sockets-based applications. SDP is layered on
top of IB message-oriented transfer model. The mapping
of the byte-stream protocol to the underlying message-
oriented semantics was designed to transfer application
data by one of two methods: through intermediate private
buffers (using buffer copy) or directly between application
buffers (zero-copy) using RDMA. Typically, there is a
threshold of message size above which zero-copy is used.
Using SDP, complete OS-bypass can be achieved. For
the sake of simplicity, the figure only shows the RDMA
implementation of SDP, as indicated above, for small
messages, SDP can use a buffered mode.

B. 10Gigabit Ethernet Overview

In an effort to improve bandwidth in data-center en-
vironments, 10Gigabit Ethernet was standardized. It was
also realized that to support increasing speeds of network
hardware, it may not be completely feasible to only offer
traditional sockets interface. This is to reduce memory
copies while transferring messages. Towards that effort,

iWARP [21] standard was introduced. iWARP is very
similar the the verbs layer used by InfiniBand, with the
exception of requiring a connection manager. In fact,
the OpenFabrics [19] network stack provides an unified
interface for both iWARP and InfiniBand. In addition to
iWARP, there are also hardware accelerated versions of
TCP/IP available. These are called TCP Offload Engines
(TOE), which use hardware offload. Figure 1(a) shows this
option (in the middle, named 10GigE-TOE). The benefits
of TOE are to maintain full socket streaming semantics and
implement that efficiently in hardware. We used 10Gigabit
Ethernet adapters from Chelsio Communications for this
study.

Recently, 10Gigabit Ethernet and InfiniBand are wit-
nessing a convergence. In particular, InfiniBand adapters
from Mellanox can be configured to run on Ethernet
networks. The software stack by OpenFabrics also provides
a unified environment for both networks to support same
applications without any code changes.

C. Solid State Drive (SSD) Overview

Conventional hard drives are constrained by the me-
chanical rotating disk, which results in poor random access
performance and excessively high power consumption [8,
9, 16]. Flash memory is a kind of electronic-erasable non-
volatile memory. Due to its compact factor and low power
consumption, it has been widely adopted in consumer
electronics.

However some intrinsic characteristics of flash mem-
ory, such as asymmetric read/write time and low write-
durability have inhibited its adoption into main stream data
storage systems. Recently significant amount of studies
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have been carried out to cope with the insufficiency of
flash memory [12, 14, 15]. The outcome of these studies
is a Flash Translation Layer (FTL) that maps data’s logical
address to physical address in flash memory. This FTL
layer in its essence is similar to a Log-Structured file
system [22] in that, it converts all writes, random or
sequential, to sequential appending to the end of the log.
By doing so it also achieves an even wear-leveling [13]
which avoids the premature wear-out in a portion of the
flash memory.

With the advancement at both research community and
Industry, today flash memory based Solid State Drive
(SSD) [1, 3] has emerged as a viable alternative to mechan-
ical disks in main stream computer clusters [20]. These
high capacity SSDs have implemented a sophisticated FTL
layer that achieves both high performance and reliable data
durability. They exhibit many technical advantages over
mechanical disks such as outstanding random-access per-
formance, high sequential-access throughput, low power
consumption, compact form factor and better shock resis-
tance.

D. Hadoop Distributed Filesystem (HDFS)
Overview

HDFS (Hadoop Distributed File System) is a distributed
user level filesystem to store and manage the data in
a Hadoop cluster. As illustrated in Figure 1(b), HDFS
includes a dedicated node called NameNode to store all
meta-data and multiple other nodes called DataNode to
store applications data. The Ethernet network is used to
connect all nodes. HDFS is implemented in Java and
provides the portability across heterogeneous hardware and
software platforms. Files in HDFS are split into smaller
blocks, typically 64MB, and each block is stored as an
independent file in the local file system of DataNodes.
Through the DataNode abstraction which is independent
of local storage, HDFS supports the physical filesystem
heterogeneity. Each block of a HDFS file is replicated at
multiple DataNodes, typically 3 replicas. Through replicat-
ing application data, HDFS provides the data durability.
The NameNode manages the namespace tree and the
physical location of each file. HDFS client contacts the
NameNode to perform file system operations.

When a client application reads a HDFS file, it first
requires the NameNode to check its access permission
and gets the list of DataNodes hosting replicas of all
blocks. Then, it sends the requirements to the “closest”
DataNode and requests a specific block. Next, a socket
connection is created between the client and the DataNode.
The data is transferred to the client application. When a
client application writes a HDFS file, it first splits the file
into HDFS blocks (64MB) and requires the NameNode to

get the list of DataNodes to host replicas of the each block
which is handled by simultaneous threads. If the client
application is running on a DataNode, the first replica
of the file is written into the local file system on the
current DataNode. If the client application isn’t running
on a DataNode, a socket connection is created between
the client and the first DataNode. The client splits the
block into smaller packets, typically 4KB, and starts a
pipeline: the client sends a packet to the first DataNode;
the first DataNode receives this packet, writes it to the
local file system, and flushes it to the next DataNode.
A DataNode can receive the data from a previous node
and at the same time forward the data to the next node.
When all nodes in this pipeline write the block into local
filesystem successfully, the block write is finished and then
DataNodes update the block physical information to the
NameNode.

III. Benefits of Modern Interconnects on
Cloud Computing Middleware

High-Performance interconnects provide low latency (1-
2µs) and high bandwidth (up to 32Gbps). In addition, they
can support this high rate and low latency with very little
CPU utilization. Typical values of CPU utilization of 2%-
5% are commonly reported while transferring messages
at wire speed on commodity machines running mainline
Linux kernels.

The HPC community has very effectively leveraged the
efficiency of these interconnects. The Message Passing
Library (MPI) is a standard for parallel programming and
is very widely used by many scientific applications. It pro-
vides a message-boundary oriented interface to send, re-
ceive messages along with remote-memory access (RMA).
MVAPICH and MVAPICH2 [17] are high-performance
implementations of the MPI standard on InfiniBand. MVA-
PICH/MVAPICH2 are implemented directly on top of
InfiniBand verbs and provide the highest performance.

Figure 2 presents the efficiency of the Top500 systems.
The data is collected from top500.org. The efficiency
metric is calculated as the ratio of peak flops (floating
point operations) of the hardware to sustained performance
reported by the Linpack benchmark. We observe from this
figure that systems connected with InfiniBand provide very
good efficiencies, often in the 90% to 95% range (with
proper tuning). In fact, efficiencies offered by InfiniBand
and 10Gigabit Ethernet rival those of proprietary custom
designed interconnection networks such as those from IBM
Blue-Gene and Cray. 1Gigabit Ethernet systems using MPI
libraries over traditional sockets can only provide about
50% efficiency. It is to be noted that the IB-GPU/Cell
systems have lower efficiency, but that is due to the inabil-
ity to achieve peak flops on NVIDIA GPUs or IBM Cell
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Fig. 2. Efficiency data from Top500 Compute Systems Ranking November 2010

blades. This is an issue with peak advertised flops using
special instructions useful for graphics, but not exploited
by Linpack benchmark. This is definitely not a limitation
of IB as such, rather a CPU vs. GPU issue.

We believe that using high-performance interconnects,
even data-centers can boost their efficiency significantly,
as have the Top500 compute systems.

IV. Experimental Evaluation and Results

In this section, we conduct several popular Hadoop
Benchmarks to evaluate the performance of HDFS with
different networking technologies(1GigE, IPoIB, SDP, and
10GigE) using either hard drive or SSD as storage devices.

A. Experiment Configurations

An InfiniBand Linux cluster is used in the evaluation.
Each node in the cluster has eight processor cores on two
Intel Xeon 2.33GHz Quad-core CPUs, 6 GB Main mem-
ory, and a 250GB ST3250310NS Hard drive. Each node
is equipped with a Mellanox MT25208 DDR (16Gbps)
HCA and 10GigE adapter by Chelsio Communications
(T320). HDFS is implemented over sockets. In this paper,
we focus on understanding the performance characteristics
of HDFS when the sockets layer itself is configured to
run on InfiniBand and 10Gigabit Ethernet. We choose
three different modes to run sockets. The combinations
are shows in Figure 1(a) and marked with the same names
used in the rest of this section. IPoIB, SDP, 10GigE-TOE
and 1GigE. The 1Gigabit Ethernet is the on-board Ethernet
device.

All nodes run RHEL 5.3 and Hadoop framework 0.20.2
with Sun Java SDK 1.6.0. In our experiment, one node

is dedicated as the NameNode server, and another node
as JobTracker. We vary the number of DataNode to be
2/4/8. Each DataNode also works as a TaskTracker. The
Hadoop replication factor is set to 3 for all experiments.
This is the recommended number of replicas. Out of the
8 DataNodes, four nodes have an Intel X-25E 64GB SSD
as an alternative storage device.

B. Microbenchmark Level Evaluation

HDFS is written in Java for portability reasons. It uses
sockets programming API in Java for network communi-
cation. In order to understand Java socket communication
performance on different networks and protocols, we de-
signed and implemented a micro benchmark to test point-
to-point bandwidth. The test has two processes - client and
server. The client sends a particular size message for a
certain number of iterations. When the server has received
all the messages, it sends an acknowledgment back to the
client. We have implemented this benchmark in both C and
Java.

Figure 3(a) illustrates bandwidth achieved by the C
version of the benchmark. The InfiniBand network is
16Gbps (DDR - Double Data Rate), therefore bandwidth
achieved is greater than 10Gigabit Ethernet. Figure 3(b)
illustrates bandwidth with the corresponding Java version
of the benchmark. We have developed two versions of the
Java benchmark. One uses normal Java arrays (byte[])
for the messages exchanged between server and client. The
other version uses Java NIO direct allocated buffers for the
messages. As can be seen from the figure, the NIO version
can achieve very good bandwidth, similar to the C version.
By doing this micro-benchmark level evaluation, we learn
that provided there is some care taken in the messaging of
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Fig. 3. Bandwidth comparison between C and Java on various network interfaces and technologies

HDFS design, it has the potential to achieve speeds that
are possible in a lower-level language, such as C. We also
note that while HDFS uses NIO buffers, it does not use the
allocateDirect method for getting message buffers
at DataNodes. Without using direct buffers, the JVM may
not use native methods for I/O. Also, direct buffers are
allocated outside the garbage collection heap. However,
allocation of direct buffers may be more expensive. There-
fore, HDFS needs to be redesigned keeping these factors
in consideration.

C. Sequential Write/Read Performance of
DFS I/O Benchmark

DFSIO is a file system benchmark as part of the Hadoop
distribution that measures the I/O performance of HDFS.
It is implemented as a Hadoop job in which each map
task opens one file to perform sequential write or read,
and measures the data IO size and execution time of that
task. There is a single reduce task followed by a post-
processing task, which aggregates the performance results
of all the map tasks [10]. In our experiments we start 2
map tasks each writing/reading a file to/from 8 DataNode
servers, with size of each file ranging from 1GB to 10GB.
Due to space constraints, only the results with two map
tasks and two data files are shown, but the same trend is
observed in all tests using varied number of map tasks.

Figure 4(a) shows the averaged sequential write
throughput for each map task using 1GigE, IPoIB, SDP
and 10GigE (Chelsio), respectively. As indicated in Fig-
ure 4(a), better network bandwidth helps improve the
write performance. Compared to the baseline 1GigE,
IPoIB/SDP/10GigE can achieve significant performance
gains. For smaller files of 2GB, we see a bigger improve-
ment greater than 100%. For larger files, the improvement

is still about 35%.
Shafer et. al have described HDFS limitations when it

comes to I/O scheduling in [23]. This work shows that the
current HDFS implementation is not designed to use a pool
of I/O threads. Some of these limitations are alleviated
by SSDs. Although, currently, SSDs have not reached
the capacities per dollar of HDDs, they are gradually
being adopted for staging and for use with medium sized
datasets. In this experiment, we used SSDs to see if the
performance of HDFS can be improved with SSDs. Most
notably, we wanted to observe if SSDs result in a higher
impact of high-performance networks (especially since the
I/O bottlenecks are alleviated due to a different storage
technology). Due to limited amount of hardware resources,
we used 4 DataNodes each with an Intel X-25E 64GB SSD
to store the data files, and rerun the above tests with 2 map
tasks. Figure 4(b) compares the average write throughput
for each map task using Hard Drive and SSD with varied
interconnections and protocol stacks.

With 1GigE, SSD improves the write performance by
up to 53% over hard drive. Much higher improvements
are obtained when advanced interconnections and protocol
stacks come into play. In the case of 1GigE, the system
tends to be network bandwidth bounded, so SSD’s advan-
tages are not clearly exhibited. As the network bandwidth
is increased, the system becomes more and more storage
bandwidth bounded. Therefore the excellent throughput of
SSD is manifested more prominently. SSD achieves 2.55
times the throughput of HDD when IPoIB is used. The
throughput with SSD is up to 3.19/2.54 times of HDD
when using SDP/10GigE respectively.

In the sequential read test, each DataNode reads data
locally, verifies the correctness of each data chunk and
discards it without transferring data over the network.
This results only reflect the local I/O throughput on each
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DataNode. We feel this is orthogonal to our intentions in
this paper which focus on how network interconnects can
affect HDFS performance. Therefore they are not included
in this paper.

D. RandomWriter Benchmark Evaluation

RandomWriter is a built-in benchmark inside Hadoop
distribution. It runs a MapReduce job with N maps per
node. Each map generates 1GB of random binary data
containing varied-sized key-value pairs, and write these
pairs to the HDFS sequence file. The reduce phase is not
used [28]. We let each DataNode host 5 maps, with total
amount of data to be 10/20/40 GB on 2/4/8 DataNodes.
Figure 5(a) shows the execution time of RandomWriter
using 1GigE, IPoIB, SDP and 10GigE(Chelsio), respec-
tively. With 2 DataNodes, HDFS implicitly adjusts the
data replication factor to be two instead of the default
three replicas, resulting in less cost incurred to transfer
the duplication over the network. Therefore the execution
time is much less than with 4/8 DataNodes. As more
data is transferred over the network with 4/8 DataNodes,
benefits of advanced interconnection technologies and
protocols can be observed more obviously. At 4 DataN-
odes, IPoIB/SDP/10GigE drives down the execution time
by 15%/22%/25%, respectively. Larger improvements of
29%/29%/30% are obtained when more storage bandwidth
is provisioned using 8 DataNodes.

We then substituted disk drives on 4 DataNodes with
SSDs, and rerun the RandomWriter benchmark to measure
the performance improvement caused by SSD. As depicted
in Figure 5(b), SSD helps reduce the execution time by
50% with 1GigE on 2 DataNodes. With 4 DataNodes and
SDP, SSD cuts down the execution time by 59% over disk
drives.

E. Sort Benchmark Evaluation

Sort is often used as a baseline benchmark for HDFS.
The sorting program has been pervasively accepted as
an important performance indicator of MapReduce, be-
cause sorting is an intrinsic behavior of the MapReduce
framework. In our experiments, the input data of Sort is
generated using the RandomWriter. At the beginning of
its execution, Sort maps the tasks to all data nodes. Each
task then reads local data and performs sorting in parallel.
A reduce phase follows the sorting phase to merge the
locally-sorted data chunks from all data nodes and writes
them to a new file. Figure 6(a) shows the execution time
of Sort on 2/4/8 DataNodes.

Since Sort is primarily bounded by the disk IO band-
width on each DataNode to load data at sorting phase,
advanced network technologies and protocols can only
help in the reduce phase to transfer partially-sorted data.
Therefore we observe a slight improvement of up to 11%
over the baseline 1GigE.

Given that Sort is more likely to be disk IO bandwidth
bounded, we replaced the disk drives on 4 DataNodes with
SSDs to evaluate the benefit of high performance storage
devices. As expected, in Figure 6(b), SSD helps shrink the
execution time by 28% over the disk drive when using 2
DataNodes with 1 GigE. If SDP is used as the network
communication mechanism, SSD shortens the execution
time by 48% over disk drive on 4 DataNodes.

V. Related Work

The MapReduce programming model was introduced
recently in 2004 by Dean et. al in [7]. Doug Cutting et al.
have implemented an Open-source version of MapReduce
– Hadoop, based on the Hadoop Distributed File System
(HDFS) [27]. Apache Hadoop is designed to work on
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Fig. 5. Execution time of Random Write (Lower is Better)
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Fig. 6. Execution time of Sort (Lower is Better)

a wide variety of hardware. It is written in Java. Re-
cently, [23], Shafer et. al. have analyzed and revealed
several HDFS performance bottlenecks: the first one is the
architecture bottleneck in Hadoop implementation, which
delays new MapReduce tasks scheduled to DataNodes; the
second one is portability bottleneck: in order to maintain
portability across heterogeneous platforms, HDFS ignores
the optimization on the native storage resource and leads to
local disk access becoming a bottleneck. In [24], Shvachko
et. al. from Yahoo! have described HDFS detailed de-
sign and implementation. They reveal the bandwidth and
not latency is more important to HDFS performance.
They have also discussed HDFS performance with the
aggregated read and write bandwidth on DataNodes and
the throughput on NameNode in their cluster. In [26],
Tantisiriroj et. al. have compared PVFS and HDFS, and
illustrated PVFS can provide the comparable performance
to HDFS in the Internet services environment. Through
real applications such as sort, they also reveal HDFS is
better when it comes to support MapReduce, due to its

design characteristics such as move code to data to improve
locality, process data sequentially, and avoid data random
access patterns. In the recent past, there has been some
work towards the applicability of high-performance inter-
connects in data-center environment [5, 18, 30, 31]. This
work mainly focused on developing low-level substrates
to expose RDMA capabilities of InfiniBand and 10Gigabit
iWARP Ethernet. This work, however, was done before
the Hadoop project became popular and there was an
ecosystem of open-source data-center middleware. The aim
of this paper is to attempt to bring the benefits of modern
interconnects and protocols to data-center middleware by
the way of Hadoop open-source software.

VI. Conclusions and Future Work

In this paper we have attempted to answer the question
of whether high-performance interconnects and protocols
can have a positive impact on Hadoop Distributed Filesys-
tem (HDFS) performance. In order to see the impact
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of faster interconnection network, we examined various
network options to enable accelerated sockets. In the case
of InfiniBand, we explored the use of IP over IB and
Sockets Direct Protocol on Mellanox adapters. In the
case of 10Gigabit Ethernet, we explored the use of a
TCP Offload Engine (TOE) available from Chelsio. We
also investigated the performance of HDFS workloads
with Solid State Drives. Our findings reveal that a faster
interconnect and protocols can improve the performance of
HDFS significantly. The impact is even more pronounced
when SSDs are used for storage.

We observe up to 11%, 30% and 100% performance im-
provement for the sort, random write and sequential write
benchmarks using magnetic disks (HDD). We also find
that with the emerging trend of Solid State Drives, having
a faster interconnect makes a larger impact as local I/O
costs are reduced. We observe up to 48%, 59% and 219%
improvement for the same benchmarks when SSD is used
in combination with advanced interconnection networks
and protocols. We also discuss opportunities in HDFS
implementation to improve the chances of performance
increase with better interconnects. For example, the use of
direct allocated buffers on DataNodes will enable Sockets
Direct Protocol on InfiniBand to use zero-copy protocols
and boost bandwidth.

We will continue working in this area in the future.
We are currently investigating strategies to reduce HDFS
communication overheads. We are are also looking into
HBase and its use of HDFS for implementing random
access to large amounts of data in real time.

VII. Acknowledgments

This research is supported in part by DOE grants
#DE-FC02-06ER25749 and #DE-FC02-06ER25755; NSF
grants #CNS-0403342, #CCF-0702675, #CCF-0833169,
#CCF-0916302 and #OCI-0926691.

We would like to thank Dr. Chet Murthy and Dr.
Matthew Arnold of IBM T. J. Watson Research Center
for many helpful discussions. We would also like to thank
Dror Goldenberg, Amir Vadai and Nir Kriss of Mellanox
Technologies for their help in getting Java and SDP to
work together.

References

[1] Fusion-IO SSD. http://www.fusionio.com/.
[2] InfiniBand Trade Association. http://www.infinibandta.com.
[3] Intel SSD. http://www.intel.com/design/flash/nand/.
[4] Sockets Direct Protocol. http://www.infinibandta.com.
[5] P. Balaji, H. V. Shah, and D. K. Panda. Sockets vs RDMA Interface

over 10-Gigabit Networks: An In-depth analysis of the Memory
Traffic Bottleneck. In Workshop on Remote Direct Memory Access
(RDMA): Applications, Implementations, and Technologies (RAIT),
in conjunction with IEEE Cluster, 2004.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A
Distributed Storage System for Structured Data. In OSDI’06: Sev-
enth Symposium on Operating System Design and Implementation.
USENIX Association, 2006.

[7] J. Dean and S. Ghemawat. MapReduce: simplified data processing
on large clusters. In In OSDI04: Proceedings of the 6th conference
on Symposium on Opearting Systems Design and Implementation.
USENIX Association, 2004.

[8] X. Ding, S. Jiang, F. Chen, K. Davis, and X. Zhang. DiskSeen: Ex-
ploiting Disk Layout and Access History to Enhance I/O Prefetch.
In Proceedings of USENIX07, 2007.

[9] C. Gniady, Y. C. Hu, and Y.-H. Lu. Program Counter Based
Techniques for Dynamic Power Management. In Proceedings of
the 10th International Symposium on High Performance Computer
Architecture, HPCA ’04, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[10] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang. The HiBench
benchmark suite: Characterization of the MapReduce-based data
analysis. In ICDE Workshops, pages 41–51, 2010.

[11] Infiniband Trade Association. http://www.infinibandta.org.
[12] Jesung Kim and Jong Min Kim and Noh, S.H. and Sang Lyul

Min and Yookun Cho. A space-efficient flash translation layer for
CompactFlash systems . Consumer Electronics, IEEE Transactions
on, 48(2):366–375, May 2002.

[13] Kawaguchi, Atsuo and Nishioka, Shingo and Motoda, Hiroshi. A
flash-memory based file system. In Proceedings of the USENIX
1995 Technical Conference Proceedings on USENIX 1995 Technical
Conference Proceedings, pages 13–13, 1995.

[14] Lee, Sang-Won and Park, Dong-Joo and Chung, Tae-Sun and Lee,
Dong-Ho and Park, Sangwon and Song, Ha-Joo. A log buffer-based
flash translation layer using fully-associative sector translation.
ACM Trans. Embed. Comput. Syst., 6(3):18, 2007.

[15] Lee, Sungjin and Shin, Dongkun and Kim, Young-Jin and Kim,
Jihong. LAST: locality-aware sector translation for NAND flash
memory-based storage systems. SIGOPS Oper. Syst. Rev., 42(6):36–
42, 2008.

[16] Z. Li, Z. Chen, S. M. Srinivasan, and Y. Zhou. C-Miner: Mining
Block Correlations in Storage Systems. In Proceedings of the 3rd
USENIX Symposium on File and Storage Technologies (FAST 04),
pages 173–186, 2004.

[17] MVAPICH2: High Performance MPI over InfiniBand,
10GigE/iWARP and RoCE. http://mvapich.cse.ohio-state.edu/.

[18] S. Narravula, A. Mamidala, A. Vishnu, K. Vaidyanathan, and
D. K. Panda. High Performance Distributed Lock Management
Services using Network-based Remote Atomic Operations. In Int’l
Symposium on Cluster Computing and the Grid (CCGrid), 2007.

[19] OpenFabrics Alliance. http://www.openfabrics.org/.
[20] X. Ouyang, S. Marcarelli, and D. K. Panda. Enhancing Checkpoint

Performance with Staging IO and SSD. Storage Network Archi-
tecture and Parallel I/Os, IEEE International Workshop on, pages
13–20, 2010.

[21] RDMA Consortium. Architectural Specifications for RDMA over
TCP/IP. http://www.rdmaconsortium.org/.

[22] M. Rosenblum and J. Ousterhout. The Design and Implementation
of a Log-Structured File System. ACM Transactions on Computer
Systems, 10, 1992.

[23] J. Shafer, S. Rixner, and A. L. Cox. The Hadoop Distributed Filesys-
tem: Balancing Portability and Performance. In Proceedings of the
2010 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS’10), pages 122–133, 2010.

[24] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop
Distributed File System. In Proceedings of the 26th IEEE Inter-
national Symposium on Mass Storage Systems and Technologies
(MSST’10), pages 1–10, 2010.

[25] H. Subramoni, P. Lai, M. Luo, and D. K. Panda. RDMA over
Ethernet - A Preliminary Study. In Proceedings of the 2009 Work-
shop on High Performance Interconnects for Distributed Computing
(HPIDC’09), 2009.

9



[26] W. Tantisiriroj, S. Patil, and G. Gibson. Data-intensive file systems
for Internet services: A rose by any other name ... Technical report,
Carnegie Mellon University Parallel Data Lab Technical Report
CMU-PDL-08-114, 2008.

[27] The Apache Software Foundation. The Apache Hadoop Project.
http://hadoop.apache.org/.

[28] Tom White. Hadoop: The Definitive Guide. O’Reilly.
[29] Top500. Top500 Supercomputing systems, November 2010.

http://www.top500.org.
[30] K. Vaidyanathan, S. Narravula, P. Balaji, and D. K. Panda. Design-

ing Efficient Systems Services and Primitives for Next-Generation
Data-Centers. In Workshop on NSF Next Generation Software(NGS)
Program; held in conjunction with IPDPS, 2007.

[31] K. Vaidyanathan, S. Narravula, P. Lai, and D. K. Panda. Optimized
Distributed Data Sharing Substrate in Multi-Core Commodity Clus-
ters: A Comprehensive Study with Applications. In Int’l Symposium
on Cluster Computing and the Grid (CCGrid), 2008.

10


