
MPI4Spark 0.2 User Guide

HIGH-PERFORMANCE BIG DATA TEAM

http://hibd.cse.ohio-state.edu

NETWORK-BASED COMPUTING LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

THE OHIO STATE UNIVERSITY

Copyright (c) 2011-2023
Network-Based Computing Laboratory,

headed by Dr. D. K. Panda.
All rights reserved.

Last revised: September 26, 2023

http://hibd.cse.ohio-state.edu

Contents

1 Overview of the MPISpark Project 1

2 Features 1

3 Setup Instructions 2
3.1 Installation Pre-requisites . 2

3.1.1 Installing MPI4Spark . 2

4 Cluster Manager Overview 2
4.1 MPI4Spark with Standalone Cluster Manager . 2
4.2 MPI4Spark with YARN Cluster Manager . 3

5 Starting a Hadoop YARN cluster when using YARN Cluster Manager with Spark 3

6 Running Examples 5
6.1 SparkPi . 5

6.1.0.1 Using the Standalone Cluster Manager 5
6.1.0.2 Using the YARN Cluster Manager . 7

6.2 OSU HiBD-Benchmarks (OHB) . 8
6.2.1 GroupByTest . 8

6.2.1.1 Using the Standalone Cluster Manager 8
6.2.1.2 Using the YARN Cluster Manager . 9

6.2.2 SortByTest . 10
6.3 Intel HiBench Benchmarks . 10

6.3.1 Installing and Building Intel HiBench . 10
6.3.2 Configuring HiBench . 11
6.3.3 Preparing Data . 11
6.3.4 Running the Benchmark with Standalone . 12
6.3.5 Running the Benchmark with YARN . 13

6.4 Stopping MPI4Spark with Standalone Cluster Manager 13

7 Troubleshooting with MPI4Spark 14

i

MPI4Spark Network-Based Computing Laboratory, The Ohio State University

1 Overview of the MPISpark Project

MPI4Spark is a version of Apache Spark designed with a high-performance MPI-based Netty communi-
cation backend. It harnesses the power of modern HPC clusters supporting advanced interconnects like
InfiniBand, Intel OPA, and HPE Slingshot for Big Data stacks. This project incorporates compatibility with
various cluster managers, including the YARN cluster manager and Spark’s standalone cluster manager.

The new YARN design in MPI4Spark v0.2 aims to enhance scalability for HPC environments. The MPI-
based Netty communication backend relies on the MVAPICH2-J Java bindings library for MVAPICH. For
any inquiries or feedback, please reach out to mvapich-discuss@lists.osu.edu.

2 Features

High-level features of MPI4Spark are listed below. New features and enhancements are marked as (NEW).

• Based on Apache Spark 3.3.0

• (NEW) Support for the YARN cluster manager

• Compliant with user-level Apache Spark APIs and packages

• High performance design that utilizes MPI-based communication

– Utilizes MPI point-to-point operations

– Relies on MPI Dynamic Process Management (DPM) features for launching executor processes
for the standalone cluster manager

– (NEW) Relies on the Multiple-Program-Multiple-Data (MPMD) launcher mode for launching
executors when using the YARN cluster manager

• Built on top of the MVAPICH2-J Java bindings for MVAPICH2 family of MPI libraries

• Tested with

– (NEW) OSU HiBD-Benchmarks, GroupBy and SortBy

– (NEW) Intel HiBench Suite, Micro Benchmarks, Machine Learning Workloads and Micro Bench-
marks on a cluster size of 32 NodeManager nodes

– Mellanox InfiniBand adapters (EDR and HDR 100G and 200G)

– HPC systems with Intel OPA and Cray Slingshot interconnects

– Various multi-core platforms

1

mailto:mvapich-discuss@lists.osu.edu

MPI4Spark Network-Based Computing Laboratory, The Ohio State University

3 Setup Instructions

3.1 Installation Pre-requisites

Please make sure that the following is done on a Linux operating system and at least Java version 8 or
OpenJDK version 1.8 is being used. The MVAPICH2 library along with its Java bindings are required
by MPI4Spark. Please follow the userguides below for installing and building MVAPICH2 and its Java
bindings.

• MVAPICH2 2.3.7 Userguide

• MVAPICH2 Java Bindings Userguide

3.1.1 Installing MPI4Spark

1. Install Hadoop YARN:

wget https://downloads.apache.org/hadoop/common/hadoop-3.3.4/hadoop-3.3.4.tar.gz

tar xvzf hadoop-3.3.4.tar.gz

export HADOOP_HOME=path/to/hadoop

2. Install MPI4Spark:

$ wget http://hibd.cse.ohio-state.edu/download/hibd/mpi4spark-0.2-x86-bin.tar.gz

$ tar xzvf mpi4spark-0.2-x86-bin.tar.gz

$ export SPARK_HOME=/path/to/mpi4spark-0.2-x86-bin

Copy the jar file created by the Java bindings inside of MPI4Spark. You will also have to copy the
hadoop-yarn-server-nodemanager-3.3.4.jar jar file into Hadoop.

$ cp $MV2J_HOME/lib/mvapich2-j.jar $SPARK_HOME/jars/
$ cp $SPARK_HOME/jars/hadoop-yarn-server-nodemanager-3.3.4.jar

$HADOOP_HOME/share/hadoop/yarn/

4 Cluster Manager Overview

4.1 MPI4Spark with Standalone Cluster Manager

MPI4Spark uses a Java wrapper program (SparkMPI.java) to launch the Apache Spark cluster. Figure 1
illustrates the steps required in launching Spark with two workers, a master, and a driver using MPI. In Step
A 4 wrapper processes are launched on separate nodes with their respective MPI ranks. In Step B the Spark
cluster is created where each process forks Spark processes. In Step C the executor processes are launched

2

http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-quickstart.pdf
http://mvapich.cse.ohio-state.edu/userguide/mv2j/

MPI4Spark Network-Based Computing Laboratory, The Ohio State University

using the DPM operation MPI Comm spawn multiple(). The node view is illustrated under nodes A,
B, C, and D.

Figure 1: An example illustrating how a MPI4Spark execution is launched

4.2 MPI4Spark with YARN Cluster Manager

MPI4Spark introduces a new design when using the YARN cluster manager that launches Spark executor
processes using the Multiple-Program-Multiple-Data (MPMD) launcher mode which is supported by the
MVAPICH MPI launcher (i.e., mpirun rsh). In this design, only Spark executors are launched in an MPI
environment, as opposed to the entire Spark cluster, as seen when using the standalone cluster manager.
Figure 2 illustrates the new YARN design and figure 3 gives an overview of the implementation.

In both figures, only executors are launched within an MPI COMM WORLD communicator. This is dif-
ferent from the standalone design, where the entire cluster is launched in a COMM WORLD communicator
and later the executors are dynamically launched within a DPM COMM.

5 Starting a Hadoop YARN cluster when using YARN Cluster Manager with
Spark

When using the YARN cluster manager, we will have to configure Hadoop YARN. We will also need to add
the HADOOP CONF DIR environment variable.

$ echo ’export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop’ >> ˜/.bashrc
$ source ˜/.bashrc

Let’s begin with configuring the Hadoop YARN cluster. Please make sure you have the respective
hadoop-yarn-server-nodemanager-3.3.4.jar jar file that was made available with this ver-
sion release of MPI4Spark into your Hadoop directory.

3

MPI4Spark Network-Based Computing Laboratory, The Ohio State University

Figure 2: Design Figure 3: Implementation

Figure 4: MPI4Spark with YARN

Inside the Hadoop directory, there are several files that will need to be updated, etc/hadoop/core-site.xml
and etc/hadoop/yarn-site.xml.

The contents of etc/hadoop/core-site.xml are the following, MASTER NODE is a placeholder
for the hostname the user wishes to use for setting up the NameNode for the Hadoop HDFS cluster.

<configuration>
<property>

<name>fs.defaultFS</name>
<value>hdfs://MASTER_NODE:8020</value>

</property>
</configuration>

The contents of etc/hadoop/yarn-site.xml are the following. You will have to add your re-
spective values to each property listed here. The yarn.nodemanager.env-whitelist should be left
unchanged.

<configuration>
<property>

<name>yarn.resourcemanager.hostname</name>
<value>MASTER_NODE</value>

</property>

<property>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>MAX-ALLC-MB</value>

</property>

<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>MEM-MB</value>

</property>

<property>
<name>yarn.scheduler.maximum-allocation-vcores</name>
<value>MAX-ALLC-VCORES</value>

</property>

4

MPI4Spark Network-Based Computing Laboratory, The Ohio State University

<property>
<name>yarn.nodemanager.resource.cpu-vcores</name>
<value>CPU-VCORES</value>

</property>

<property>
<name>yarn.nodemanager.env-whitelist</name>
<value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,YARN_HOME,
SPARK_DRIVER_HOSTNAME,HOSTNAME,SPARK_HOME,SPARK_MPI_USE_YARN</value>

</property>
</configuration>

The user will also have to add the following to the etc/hadoop/yarn-env.sh file in their Hadoop
directory. Update the line below with the respective driver node hostname. For MPI4Spark, the driver node
must be a separate node outside of the YARN cluster.

$ echo ’export SPARK_DRIVER_HOSTNAME=<DRIVER-HOSTNAME>’ >> etc/hadoop/yarn-env.sh
$ echo ’export SPARK_MPI_USE_YARN=1’ >> etc/hadoop/yarn-env.sh

The user must also update the etc/hadoop/workers file with a list of hostnames listing out the
workers to have the NodeManager and DataNode processes launched on.

Also, make sure to clear mpmd-config directory at $SPARK HOME. Once this has all been done, and
to startup the Hadoop YARN cluster, simply run the following commands from MASTER NODE. Here
$HADOOP HOME refers to the Hadoop home directory.

$ rm $SPARK_HOME/mpmd-config/*
$ echo ’N’ | $HADOOP_HOME/bin/hdfs namenode -format hadoop_cluster
$ $HADOOP_HOME/sbin/start-dfs.sh
$ $HADOOP_HOME/sbin/start-yarn.sh

6 Running Examples

6.1 SparkPi

In this subsection, we will run a simple Apache Spark application called SparkPi that computes the value of
Pi. The setup for running the SparkPi application is different depending on whether or not the user is using
the standalone or YARN cluster manager.

6.1.0.1 Using the Standalone Cluster Manager When using the standalone cluster manager, we will
begin with setting up a hostfile. The host file will contain the hostnames for the different components in the
Spark standalone cluster.

$ cd mpi4spark-0.2-x86-bin/

$ cat hostfile
hostname-1
hostname-2

5

MPI4Spark Network-Based Computing Laboratory, The Ohio State University

...
hostname-n

MPI4Spark launches the components of its cluster in the following way:

• The worker and executor processes are launched on hostnames 1 through n-2.

• The master process is launched on hostname n-1.

• The driver process is launched on hostname n.

Considering a Spark cluster consisting of a master, two workers, and a driver, let’s look at the following
hostfile for an example,
$ cat hostfile
hostname-1
hostname-2
hostname-3
hostname-4

MPI4Spark will launch the workers on hostname-1 and hostname-2 along with their respective execu-
tor processes. The master process will be launched on hostname-3 and the driver process on hostname-4.
MPI4Spark relies on the client deployment mode for running applications.

Moving on, to run SparkPi, we will add a new file (app.sh) at the root of the MPI4Spark directory, and it
will contain the following,
./bin/spark-submit --master spark://$1:7077 --class org.apache.spark.examples.SparkPi

examples/jars/spark-examples_2.12-3.3.0-SNAPSHOT.jar

The app.sh file submits the application we want to run on the Spark standalone cluster. This file will be
executed inside of the SparkMPI.java wrapper program.

We will now configure MPI4Spark. We will edit the template files inside of the conf/ directory.
$ cd conf
$ ls
fairscheduler.xml.template log4j.properties.template metrics.properties.template

spark-defaults.conf.template spark-env.sh.template

$ cp spark-env.sh.template spark-env.sh
$ cp spark-default.conf.template spark-defaults.conf

Add the following inside of your spark-env.sh file. There is a variable SPARK USE MPI is set to 1 by
default and is used to enable MPI communication. We don’t have to use it specify it here since it’s set to 1
by default.
export SPARK_HOME=path/to/sparkmpi
export SPARK_NO_DAEMONIZE=1
export JAVA_LIBRARY_PATH=$JAVA_LIBRARY_PATH:$MV2J_HOME
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MV2J_HOME/lib
export SPARK_LIBRARY_PATH=$MV2J_HOME/lib
export JAVA_BINARY=path/to/java/binary
export WORK_DIR=$SPARK_HOME/exec-wdir

6

MPI4Spark Network-Based Computing Laboratory, The Ohio State University

And in your spark-defaults.conf file add the following.

spark.executor.extraJavaOptions -Djava.library.path=/path/to/mvapich2-j/lib

You can run the application now using the following command.

$./sbin/start-mpi4spark.sh

A number of files will be created in your directory. You will find app.log, master.log, exec.log and
workers-x.log, where x refers to the number of workers. The app.log file will contain the output of running
the application, and for SparkPi you should see this line printed in the file.

Pi is roughly 3.142532

For our two workers example, we will have two files, worker-0.log and worker-1.log, along with mas-
ter.log, app.log, and exec.log.

6.1.0.2 Using the YARN Cluster Manager Make sure you have the YARN cluster up and running by
following the steps in 5.

Also, add the following to your $SPARK HOME/conf/spark-env.sh file. Make sure you update SPARK
DRIVER HOSTNAME with the desired respective driver node. The driver node must be a separate node

outside of the YARN and HDFS cluster.

export SPARK_HOME=path/to/sparkmpi
export SPARK_NO_DAEMONIZE=1
export JAVA_LIBRARY_PATH=$JAVA_LIBRARY_PATH:$MV2J_HOME
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MV2J_HOME/lib
export SPARK_LIBRARY_PATH=$MV2J_HOME/lib
export SPARK_MPI_USE_YARN=1
export SPARK_DRIVER_HOSTNAME=<DRIVER-HOSTNAME>

and the following to your $SPARK HOME/conf/spark-defaults.conf file.

spark.executor.extraJavaOptions -Djava.library.path=/path/to/mvapich2-j/lib
spark.yarn.am.extraJavaOptions -Djava.library.path=/path/to/mvapich2-j/lib

Now ssh to your driver node and run spark-submit. Here we are intentionally setting SPARK USE MPI
to 0, since the driver process does not use MPI in the YARN design for MPI4Spark. Only the executors
are launched within an MPI environment. Since MPI is enabled by default, we don’t have to explicitly
set it up for the executor processes. Make sure to clear mpmd-config directory at $SPARK HOME and up-
date the placeholder values in the setup-and-run-yarn-mpmd.sh in $SPARK HOME/sbin/ before running the
command below.

SPARK_MPI_USE_YARN=1 SPARK_USE_MPI=0 ./bin/spark-submit --master yarn
--num-executors=<NUM-EXEC> --deploy-mode client --class
org.apache.spark.examples.SparkPi
examples/jars/spark-examples_2.12-3.3.0-SNAPSHOT.jar

You should see a lot of output. The following will be printed amongst it, and indicates that the application
has finished running.

7

MPI4Spark Network-Based Computing Laboratory, The Ohio State University

Pi is roughly 3.142532

6.2 OSU HiBD-Benchmarks (OHB)

OSU HiBD-Benchmarks (OHB) is a Big Data benchmark package that offers benchmarks for the Apache
Spark software. These benchmarks are included in the MPI4Spark package. We will focus on two bench-
marks: 1) GroupByTest, and 2) SortByTest.

6.2.1 GroupByTest

6.2.1.1 Using the Standalone Cluster Manager This benchmark groups RDD data and performs a count
on the result. It forces a shuffling of data to take place across the network, and is a good litmus test for
determining the performance of the shuffle phase.

We will begin with setting up the hostfile. This file contains the names of the compute nodes that will
execute the given benchmark.

$ cd mpi4spark-0.1-x86-bin/

$ vim hostfile
.. write name of the compute nodes ..

$ cat hostfile
hostname-1
hostname-2
hostname-3
hostname-4

Create an app.sh file at the root of the MPI4Spark directory,

./bin/spark-submit --master spark://$1:7077 --class
org.apache.spark.examples.GroupByTest
examples/jars/spark-examples_2.12-3.3.0-SNAPSHOT.jar

The app.sh file submits the application we want to run to the Spark cluster. This file will be executed
inside of the SparkMPI.java wrapper program.

The benchmark also allows users to specify the number of mappers, number of key-value pairs, the key
size, and the number of reducers. Below is an example of how you can do that:

./bin/spark-submit --master spark://$1:7077 --class
org.apache.spark.examples.GroupByTest
examples/jars/spark-examples_2.12-3.3.0-SNAPSHOT.jar [numMappers] [numKVPairs]
[KeySize] [numReducers]

Moving on, we will now configure MPI4Spark. We will edit the template files inside of the conf/ direc-
tory.

$ cd conf
$ ls

8

MPI4Spark Network-Based Computing Laboratory, The Ohio State University

fairscheduler.xml.template log4j.properties.template metrics.properties.template
spark-defaults.conf.template spark-env.sh.template

$ cp spark-env.sh.template spark-env.sh
$ cp spark-default.conf.template spark-defaults.conf

Add the following inside of your spark-env.sh file.
export SPARK_HOME=path/to/sparkmpi
export SPARK_NO_DAEMONIZE=1
export JAVA_LIBRARY_PATH=$JAVA_LIBRARY_PATH:$MV2J_HOME
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MV2J_HOME/lib
export SPARK_LIBRARY_PATH=$MV2J_HOME/lib
export JAVA_BINARY=path/to/java/binary
export WORK_DIR=$SPARK_HOME/exec-wdir

And in your spark-defaults.conf file add the following.
spark.executor.extraJavaOptions -Djava.library.path=/path/to/mvapich2-j/lib

You can run the application now using the following command.
$./sbin/start-mpi4spark.sh

A number of files will be created in your directory. You will find app.log, master.log, exec.log and
workers-x.log, where x refers to the number of workers. In our example, we will have two workers, so two
files will be generated. worker-0.log and worker-1.log.

6.2.1.2 Using the YARN Cluster Manager Make sure you have the YARN cluster up and running by
following the steps in 5. Make sure you update SPARK DRIVER HOSTNAME with the desired respective
driver node. The driver node must be a separate node outside of the YARN and HDFS cluster.

Also, add the following to your $SPARK HOME/conf/spark-env.sh file.
export SPARK_HOME=path/to/sparkmpi
export SPARK_NO_DAEMONIZE=1
export JAVA_LIBRARY_PATH=$JAVA_LIBRARY_PATH:$MV2J_HOME
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MV2J_HOME/lib
export SPARK_LIBRARY_PATH=$MV2J_HOME/lib
export SPARK_MPI_USE_YARN=1
export SPARK_DRIVER_HOSTNAME=<DRIVE-NODE>

and the following to your $SPARK HOME/conf/spark-defaults.conf file.
spark.executor.extraJavaOptions -Djava.library.path=/path/to/mvapich2-j/lib
spark.yarn.am.extraJavaOptions -Djava.library.path=/path/to/mvapich2-j/lib

Now ssh to your driver node and run spark-submit. Here we are intentionally setting SPARK USE MPI
to 0, since the driver process does not use MPI in the YARN design for MPI4Spark. Only the executors
are launched within an MPI environment. Since MPI is enabled by default, we don’t have to explicitly
set it up for the executor processes. Make sure to clear mpmd-config directory at $SPARK HOME and up-
date the placeholder values in the setup-and-run-yarn-mpmd.sh in $SPARK HOME/sbin/ before running the
command below.

9

MPI4Spark Network-Based Computing Laboratory, The Ohio State University

SPARK_MPI_USE_YARN=1 SPARK_USE_MPI=0 ./bin/spark-submit --master yarn
--num-executors=<NUM-EXEC> --deploy-mode client --class
org.apache.spark.examples.GroupByTest
examples/jars/spark-examples_2.12-3.3.0-SNAPSHOT.jar [numMappers] [numKVPairs]
[KeySize] [numReducers]

6.2.2 SortByTest

This benchmark sorts RDD data and performs a count on the result. It forces a shuffling of data to take place
across the network, and is a good litmus test for determining the performance of the shuffle phase.

The steps here are identical to GroupByTest, though the only difference is inside of the app.sh file. You
will have to edit the app.sh file to run the SortBy benchmark. SortByTest also allows the user to specify the
number of mappers, etc, using the same format as shown above in the GroupByTest example.

./bin/spark-submit --master spark://$1:7077 --class
org.apache.spark.examples.SortByTest
examples/jars/spark-examples_2.12-3.3.0-SNAPSHOT.jar [numMappers] [numKVPairs]
[KeySize] [numReducers]

SPARK_MPI_USE_YARN=1 SPARK_USE_MPI=0 ./bin/spark-submit --master yarn
--num-executors=<NUM-EXEC> --deploy-mode client --class
org.apache.spark.examples.SortByTest
examples/jars/spark-examples_2.12-3.3.0-SNAPSHOT.jar [numMappers] [numKVPairs]
[KeySize] [numReducers]

6.3 Intel HiBench Benchmarks

HiBench is a Big Data benchmark suite developed by Intel that provides micro-benchmarks, ML workloads,
SQL and Graph workloads for a variety of Big Data frameworks including Apache Spark.

In this section we will run the micro-benchmark Sort using MPI4Spark. Hadoop will be used for data
generation. If using the Standalone cluster manager, you will want to use a regular Hadoop YARN version
here, meaning we won’t be using the hadoop-yarn-server-nodemanager-3.3.4.jar jar file we
added in 5.

6.3.1 Installing and Building Intel HiBench

We will need maven for building the Intel HiBench package.

10

MPI4Spark Network-Based Computing Laboratory, The Ohio State University

$ git clone https://github.com/Intel-bigdata/HiBench.git
$ export HIBENCH_HOME=path/to/HiBench
$ cd $HIBENCH_HOME
$ wget https://archive.apache.org/dist/maven/maven-3/3.8.1/binaries/apache-maven-3.8.1-
bin.tar.gz
$ tar xzvf apache-maven-3.8.1-bin.tar.gz
$ echo ’export MVN_HOME=path/to/mvn’ >> ˜/.bashrc
$ echo ’export PATH=$MVN_HOME/bin:$PATH’ >> ˜/.bashrc
$ source ˜/.bashrc
$ mvn -Phadoopbench -Psparkbench -Dspark=3.0 -Dscala=2.12 clean package

6.3.2 Configuring HiBench

Change directory to $HIBENCH HOME and edit conf/spark.conf and update the following variables with
the desired values.

hibench.spark.home path/to/sparkmpi
hibench.spark.master spark://master_node:7077 (for standalone)
hibench.spark.master yarn (for yarn)
spark.executor.extraJavaOptions -Djava.library.path=/path/to/mv2j/lib
spark.yarn.am.extraJavaOptions -Djava.library.path=/path/to/mv2j/lib

Edit conf/hadoop.conf and set the path to the root HDFS path in order to store the generated data

hibench.hdfs.master hdfs://master_node:8020/path/to/HiBenchData

Edit conf/hibench.conf, place your desired values for the map and shuffle parallelism parameters.

hibench.scale.profile tiny
Mapper number in hadoop, partition number in Spark
hibench.default.map.parallelism <desired-configuration>

Reducer number in hadoop, shuffle partition number in Spark
hibench.default.shuffle.parallelism <desired-configuration>

6.3.3 Preparing Data

Make sure the Hadoop YARN cluster is setup here by following the steps in 5.

To prepare the data simply run the following command,

$ cd $HIBENCH_HOME
$./bin/workloads/micro/sort/prepare/prepare.sh

11

MPI4Spark Network-Based Computing Laboratory, The Ohio State University

6.3.4 Running the Benchmark with Standalone

Copy the sparkbench.conf configuration file to your MPI4Spark directory, and update the spark path in there
to reflect MPI4Spark’s path. Make sure that you add the following to your conf/spark-env.sh file.
export SPARKBENCH_PROPERTIES_FILES=$SPARK_HOME/sparkbench.conf

$ cp $HIBENCH_HOME/report/sort/prepare/conf/sparkbench/sparkbench.conf $SPARK_HOME

We will add a new file (app.sh) at the root of the MPI4Spark directory, and it will contain the following,
$ cd $SPARK_HOME
$ cat app.sh
$SPARK_HOME/bin/spark-submit --class com.intel.hibench.sparkbench.micro.ScalaSort

--master spark://$1:7077
$HIBENCH_HOME/sparkbench/assembly/target/sparkbench-assembly-8.0-SNAPSHOT-dist.jar
hdfs://$1:8020/path/to/HiBenchData/HiBench/Sort/Input
hdfs://$1:8020/path/to/HiBenchData/HiBench/Sort/Output

The app.sh file submits the application we want to run to the Spark cluster. This file will be executed
inside of the SparkMPI.java wrapper program.

Make sure that you update the paths for the input and output HDFS files such that they reflect your paths.
Now, add a hostfile,
$ vim hostfile
.. write name of the compute nodes ..

$ cat hostfile
machine1
machine2
machine3
machine4

Add the following inside of your spark-env.sh file.
export SPARK_HOME=path/to/sparkmpi
export SPARK_NO_DAEMONIZE=1
export JAVA_LIBRARY_PATH=$JAVA_LIBRARY_PATH:$MV2J_HOME
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MV2J_HOME/lib
export SPARK_LIBRARY_PATH=$MV2J_HOME/lib
export JAVA_BINARY=path/to/java/binary
export WORK_DIR=$SPARK_HOME/exec-wdir

Finally, run the following command,
$./sbin/start-mpi4spark.sh

A number of files will be created in your directory. You will find app.log, master.log, exec.log and
workers-x.log, where x refers to the number of workers. In our example, we will have two workers, so two
files will be generated. worker-0.log and worker-1.log.

It might take some time for the command to finish. If that’s the case, open a new window and tail the
app.log file.

12

MPI4Spark Network-Based Computing Laboratory, The Ohio State University

$ tail -f app.log

6.3.5 Running the Benchmark with YARN

Make sure you add SPARK USE MPI=0 to the beginning of the line that runs the Spark job for the Sort
benchmark in $HIBENCH HOME/bin/workloads/micro/sort/spark/run.sh. For example,

SPARK_MPI_USE_YARN=1 SPARK_USE_MPI=0 run_spark_job
com.intel.hibench.sparkbench.micro.ScalaSort $INPUT_HDFS $OUTPUT_HDFS

Also, add the following to your $SPARK HOME/conf/spark-env.sh file. Make sure you update SPARK
DRIVER HOSTNAME with the desired respective driver node. The driver node must be a separate node

outside of the YARN and HDFS cluster.

export SPARK_HOME=path/to/sparkmpi
export SPARK_NO_DAEMONIZE=1
export JAVA_LIBRARY_PATH=$JAVA_LIBRARY_PATH:$MV2J_HOME
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MV2J_HOME/lib
export SPARK_LIBRARY_PATH=$MV2J_HOME/lib
export SPARK_MPI_USE_YARN=1
export SPARK_DRIVER_HOSTNAME=<DRIVER-NODE>

and the following to your $SPARK HOME/conf/spark-defaults.conf file.

spark.executor.extraJavaOptions -Djava.library.path=/path/to/mvapich2-j/lib
spark.yarn.am.extraJavaOptions -Djava.library.path=/path/to/mvapich2-j/lib

You can simply just run the script. Make sure you clear out the mpmd-config directory in $SPARK HOME
before running the following,

$ bash $HIBENCH_HOME/bin/workloads/micro/sort/spark/run.sh

6.4 Stopping MPI4Spark with Standalone Cluster Manager

After each run you will have to manually stop MPI4Spark processes. This is not needed when using the
YARN cluster manager. To do so, simply run the following script,

$./bin/stop-mpi4spark.sh

‘

13

MPI4Spark Network-Based Computing Laboratory, The Ohio State University

7 Troubleshooting with MPI4Spark

If you are experiencing any problems with MPI4Spark, please feel free to contact us by sending an email to
(mvapich-discuss@lists.osu.edu).

14

mailto:mvapich-discuss@lists.osu.edu

	Overview of the MPISpark Project
	Features
	Setup Instructions
	Installation Pre-requisites
	Installing MPI4Spark

	Cluster Manager Overview
	MPI4Spark with Standalone Cluster Manager
	MPI4Spark with YARN Cluster Manager

	Starting a Hadoop YARN cluster when using YARN Cluster Manager with Spark
	Running Examples
	SparkPi
	Using the Standalone Cluster Manager
	Using the YARN Cluster Manager

	OSU HiBD-Benchmarks (OHB)
	GroupByTest
	Using the Standalone Cluster Manager
	Using the YARN Cluster Manager

	SortByTest

	Intel HiBench Benchmarks
	Installing and Building Intel HiBench
	Configuring HiBench
	Preparing Data
	Running the Benchmark with Standalone
	Running the Benchmark with YARN

	Stopping MPI4Spark with Standalone Cluster Manager

	Troubleshooting with MPI4Spark

